Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение в температуры

В работе [31], а также в дальнейших исследованиях поведения ОЦК металлов при различных температурах одним из ключевых вопросов является количественный анализ хрупкого и вязкого разрушений. В частности, необходимо ответить на вопрос, являются зависимости 5к(Г) и е/(7 ) параметрическими или функциональными. Если зависимости Sk T) и 6 (7 ) являются параметрическими, то существует функциональная физически обусловленная связь между критическим напряжением и деформацией, которая может явиться ключом к формулировке критериев разрушения.  [c.56]


Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]

При анализе хрупкого разрушения в области температур  [c.71]

Физические модели хрупкого разрушения в области температур Т > То, где пластическая деформация, предшествующая зарождению микротрещины, может быть существенной, недостаточно разработаны. Известные дислокационные модели, использующие концепцию эффективных напряжений, показанные, например, в работе [247], относятся к случаю небольших деформаций, соответствующих напряжениям а ат.  [c.108]

Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Известно одно исключение алюминий высокой чистоты подвергается меж-кристаллитному разрушению в паре или чистой воде при температурах выше 125 °С. Присутствие примеси железа в более низкосортном металле предотвращает разрушение такого типа или повышает температуру, при которой они происходят (>200 °С для алюминия марки 1100) [2, 3]. — Примеч. авт.  [c.342]


Трещины повторного нагрева образуются в процессе высокого отпуска сварных соединений с целью снятия сварочных напряжений. Они характерны для низколегированных и легированных сталей, Б особенности для перлитных жаропрочных Сг — Мо — V сталей. Трещины представляют собой межкристаллитное разрушение в крупнозернистой части ЗТВ. Критический интервал температур растрескивания 770...970 К.  [c.547]

Разрушение материалов при длительном действии нагрузки происходит по режимам вязкого (пластического) или хрупкого разрушения в зависимости от уровней приложенных нагрузок и температур. Обычно процесс разрушения, развивающийся во времени, связывают с явлением ползучести, в результате которого происходит накопление повреждений как внутризеренное, так и межзеренное.  [c.176]

А. Ф. Иоффе Снятие поврежденного поверхностного слоя образца приводит к. повышению его прочности. Предложена схема, поясняющая переход вязкого разрушения в хрупкое с понижением температуры. Введено понятие критической температуры хрупкости  [c.479]

Для количественного сопоставления склонности материалов к хрупкому разрушению в зависимости от температурных условий эксплуатации широко используется способ серийных испытаний на ударную вязкость стандартных образцов с надрезом. По результатам этих испытаний обычно строят температурные зависимости ударной вязкости Ои и доли вязкой составляющей в изломе Fb- Для хладноломких металлов эти зависимости имеют резкий спад, по которому определяют критическую температуру хрупкости Гкр. При более пологих переходах в область хрупкого состояния используют условные приемы определения Гкр по допуску на снижение Дн или Fs- Полученная из испытаний критическая температура хрупкости Гкр(°К) сопоставляется с минимальной температурой металла в условиях эксплуатации Та.  [c.20]

Если ввести поправку на влияние пластической зоны у концов трещины согласно выражению (2.14), то в уравнении (3.17) вместо I следует использовать условную длину трещины /т. Целесообразность введения такой поправки возникает для пластичных малоуглеродистых и низколегированных сталей при хрупком разрушении в области температуры, приближающейся ко второй критической.  [c.49]

В области высокой температуры для данного уровня напряжений разрушение (в этом случае носящее характер длительного статического) определяется длительностью нагружения Тр, т. е.  [c.161]

Напряжение в кГ/мм , вызывающее разрушение при температуре  [c.284]

В некоторых работах, например [388], указывается, что при снижении температуры ниже комнатной вязкость разрушения в ряде сталей уменьшается. Учитывая, что в этих условиях механизмом до-лома в сталях обычно является скол, можно предполагать, что эти данные относятся к температурной зависимости вязкости разрушения сколом.  [c.192]

Влияние температуры на вязкость разрушения путем слияния пор до сих пор остается практически неизученным. Имеются многочисленные данные по изучению вязкости разрушения пластичных материалов, однако конкретных указаний о механизмах разрушения нет.. Можно полагать, что в этих случаях материалы разрушались слиянием пор, тогда влияние температуры на вязкость разрушения путем слияния пор состоит в ее повышении с понижением температуры [388]. В работе [384] указано, что для малоуглеродистой стали характерна снижение вязкости разрушения в интервале температур пластичного-разрушения, причем при повышении температуры от 120 К до комнатной вязкость разрушения снижается более чем вдвое.  [c.201]

Разрушение в области температур хрупко-пластичного перехода (Тх—Тх) происходит после некоторой, часто значительной, пластической деформации (рис. 5.13) и характеризуется тем, что оно начинается и развивается до некоторого предела по одному механизму, а завершается по другому — хрупко, сколом. Фрактографический анализ позволяет по речному узору скола выделить эти две стадии разрушения стадию вязкого докритического роста трещины и стадию  [c.206]


Рис, 5. Срок службы до разрушения шаров из нихарда и твердость после термообработки при различных температурах в течение 4 ч [18] А — число ударов до разрушения В — температура термической обработки в С С — твердость по Виккерсу О-О — число ударов х-X— твердость  [c.185]

Рис. 6. Срок службы до разрушения шаров из нихарда и твердость после двойной термообработки (4 ч при температуре, указанной на графике, плюс 4 ч отпуска при 275 С) [18] Л — число ударов до разрушения В — температура предварительной термической обработки в С С—твердость Рис. 6. <a href="/info/55301">Срок службы</a> до разрушения шаров из нихарда и твердость после двойной термообработки (4 ч при температуре, указанной на графике, плюс 4 ч отпуска при 275 С) [18] Л — число ударов до разрушения В — температура <a href="/info/152481">предварительной термической обработки</a> в С С—твердость
Преимущество BI.ViO доказано определением свойств вязкости по методике линейной мехапнки (X. Мазаггец и др., табл. 35), причем характерно, что это преимущество проявляется при обработке на высокую прочность выше 150 кгс/мм , когда, по-видимому, наблюдается разница в характере разрушения (при сгв<150 кгс/мм для случаев ОТО и ВТМО порог хладноломкости лежит ниже комнатной температуры и разрушение в обоих случаях вязкое, а при 0в>2ОО кгс /мм разрушение в обоих случаях полухрупкое, но при меньшей доле волокна при ОТО).  [c.393]

Выявленные закономерности послужили основой для разработки физико-механической модели хрупкого разрушения ОЦК металлов и формулировки критерия разрушения в терминах механики сплошной деформируемой среды. Теоретические и экспериментальные исследования показали, что зарождение микротрещины контролируется эффективными напряжениями, геометрией дислокационного скопления, определяющей концентрацию эффективных напряжений в голове скопления, а также наибольшим главным напряжением. С ростом температуры и пластической деформации концентрация эффективных напря-  [c.146]

Магний медленно реагирует с сухим хлором вплоть до температуры плавления металла. Серебро в хлоре и хлористом водороде не разрушается при температурах до 425° С. Титан, обладая прекрасной стойкостью во влажном газообразном хлоре, иодвергается сильному разрушению в сухом хлоре, что приводит даже к возгоранию металла. Цирконий устойчив в сухом хлоре.  [c.157]

Сонротивлеиие металла ползучести и разрушению в области высоких температур ири длительном действии нагрузки называют жаропрочностью. Чаще жаропрочность харакк ризуегся услов1Пз1м пределом ползучести и длительной прочности.  [c.285]

С, наблюдается при контакте с водным раствором Oj и СО при комнатной температуре и 0,7 МПа [11]. Катодная поляризация металла предотвращает разрушение в этом растворе. Были отмечены взрывы, вызванные растрескиванием стальных емкостей для хранения светильного газа под давлением. Растрескивание при напряжениях ниже предела упругости имело транскристал-литный характер и вызвано было присутствием в газе небольших количеств H N [12]. Аварии такого рода прекратились после удаления из газа следов H N и влаги. Могут ли СО и СОг быть одной из причин растрескивания — не установлено.  [c.134]

Сенсибилизация ферритных нержавеющих сталей наблюдается при температурах, превышающих 925 °С стойкость к межкристаллитной коррозии восстанавливается при кратковременном (10—60 мин) нагреве при 650—815 °С. Следует отметить, что эти температурные интервалы заметно отличаются от соответствующих интервалов для аустенитных нержавеющих сталей. Для ускоренных испытаний на межкристаллитную коррозию применяют аналогичные растворы (например, кипящий раствор USO4— H2SO4 или 65 % HNO3). Скорость межкристаллитной коррозии и степень поражения сталей обоих классов в этих растворах примерно одинаковы. Однако в сварных изделиях разрушения в ферритных сталях происходят как в области, непосредственно прилегающей к месту сварки, так и самом сварном шве, а в аустенитных сталях разрушения локализованы в околошовной зоне.  [c.309]

Область граничных температур лежит примерно в интервале 60—80°С. Это не противоречит полученным ранее данным Ацелло и Грина [64а], что нержавеющая сталь 18-8 подвергается КРН при комнатной температуре в сильнокислом растворе, содержащем 5М H2SO4 + 0,5М Na l. С большой долей уверенности можно утверждать, что разрушение в последнем случае происходит по другому механизму. По нашему мнению, в сильных кислотах водородное растрескивание напряженных сталей 18-8 может протекать вдоль плоскостей скольжения, где имеет место превращение -у-фазы в а-фазу. Именно а-фаза стали 18-8 (с объемно-центрированной кубической решеткой) подвержена водородному растрескиванию. Нержавеющая сталь с 25 % Сг и 20 % Ni (марки 310) не претерпевает заметных фазовых превращений при холодной обработке и относительно стойка к водородному растрескиванию, но не стойка к КРН в кипящем растворе Mg lj. См. [64Ь]. —Примеч. сшт.  [c.322]

Сварные соединения стальных конструкций в ряде случаев склонны к хрупкому разрушению в условиях работы при отрицательных температурах и условиях динамического нагружения. Этому способствует охрупчивание металла в ЗТВ вследствие воздействия СТДЦ, а также наличия геометрических концентраторов напряжений и остаточных сварочных напряжений. В соединениях низкоуглеродистых сталей наиболее склонны к хрупкому разрушению участки ЗТВ, нагреваемые до 470...770 К. Их охрупчивание связано с деформационным старением стали.  [c.546]

В большинстве случаев знание экспериментальной зависимости Гхл от величины интеграла облучения Ф1 образцов материала корпуса А7° =/(Ф0 при определенной рабочей температуре позволяет вычислить допустимое значение интеграла облучения м соответственно срок службы корпуса реактора. Опыт эксплуатации реакторов [55] показывает, что безопасная рабочая температура корпуса должна быть выше Тне менее чем на 40° С. Имеются экспериментальные данные о том, что при Тоез—Гх.( 30°С может произойти хрупкое разрушение. В тех же конструкциях при 7оез—Гхл 40°С хрупкого разрушения не происходит. Таким образом, при рабочей температуре корпуса Траб должно выполняться условие  [c.72]


Таким образом, в зависимости от типа динамической структуры, колличественно характеризующейся показателем фрактальной размерности зоны предразрушения, при понижении температуры может реализоваться структурный переход от рассеяного разрушения (в результате образования объемных фрактальных кластеров) к сосредоточенному разрушению за счет образования фрактального перколяционного кластера по фронту макротрещины. Этот переход отвечает критической температуре структурной хладноломкости, равной -75 С при D =l,67. Анализ литературных данных  [c.108]

Гл. 19 относится к механике разрушения. В современной литературе ча< то под механикой разрушения понимается один узкий ее раздел, а именно теория распространения треш,ин хрупкого и квазихрупкого разрушения. Весь формальный аппарат для этого подготовлен ранее, поэтому здесь дается лишь некоторая сводка известных уже читателю результатов и практические выводы из них. Большая же часть главы относится к условиям прочности хрупких материалов, теории накопления повреждений при длительном действии нагрузок при высоких температурах. Здесь же сообщ ены краткие сведения об усталостном разрушении. Автор полагает, что вопросы прочности как в принципиальном, так и в прикладном аспекте составляют необходимый элемент образования механика-универсанта и механика-инженера, и сознает совершенно недостаточный объем излагаемого им материала, но в заглавии книги фигурирует только слово механика , но не прочность , не расчеты , не сопротивление материалоЕ .  [c.15]

Как видно, процесс разрушения можно разбить на два этапа инкубационный период, когда внутри материала накапливаются микроскопические повреждения, и этап продвиженпя магистральной трещины, который заканчивается разрушением. Картина до чрезвычайности напоминает ту, которая наблюдается при длительном разрушении в условиях высоких температур, разница состоит в том, что субмикро- и микротрещины появляются в результате нопеременных пластических сдвигов в теле зерна, а не на границах зерен. Существуют теории накопления поврежден-ности при переменных нагрузках (Костюк), которые мы здесь не затрагиваем. Что касается роста трещины, то, как оказывается, скорость его определяется коэффициентом интенсивности напряжений, поэтому можно принять  [c.682]

Для обеспечения совместности и предотвращения разрушения в этом случае требуется диффузионное движение атомов, или дуффузионно-скользящее движение дислокаций. Мак Лин показал, что его аккомодационное движение вызывает пластическую деформацию в направлении действующего усилия. При выполнении этих условий можно ожидать практически неограниченную пластическую деформацию с достаточно высокой скоростью, зависящей от размера зерна. Следует отметить, что значительный вклад в деформацию зернограничное проскальзывание вносит лишь при достаточно высоких температурах. Обычно при этих температурах возможно действие и диффузионных механизмов деформации.  [c.180]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

На рис. 5.11 экспериментальные данные об условиях малоциклового разрушения при температуре 650°С и выдержках Лт=5 мин для стали Х18Н10Т (светлые кружки) сопоставлены с условием (5.12) (линия 1). На этом рисунке зачерненными кружками и кривой 2 показаны результаты определения условий разрушения в со-  [c.95]

Рис. 34. Критическая интенсивность напряжений в вершине трещины, характеризующая переход к спонтанному разрушению, в условиях плоской деформации К 1д стали 50ХН, згкаленной и отпущенной при 400 °С, в зависимости от температуры испытания [41] Рис. 34. Критическая <a href="/info/6932">интенсивность напряжений</a> в вершине трещины, характеризующая переход к спонтанному разрушению, в <a href="/info/130048">условиях плоской деформации</a> К 1д стали 50ХН, згкаленной и отпущенной при 400 °С, в зависимости от температуры испытания [41]
Теория Гриффитса в оригинальной форме удобна для хрупких тел. В случае пластичных металлов размер готовых трещин, удовлетворяющих критерию Гриффитса (5.2), должен достигать нескольких миллиметров, что на практике редко встречается. А. В. Степанов [377] предположил, что такие трещины в металлах зарождаются в процессе пластической деформации, предшествующей разрушению Оро-ван [378] и Ирвин [379] модифицировали теорию Гриффитса для случая разрушения более пластичных материалов и показали, что соотношение (5.2) будет справедливо, если в нем параметр поверхностной энергии Уо заменить на параметр эффективной поверхностной энергии Уэф, который учитывает пластическую деформацию, предшествующую разрушению. В последующих работах [380] было показано, что эффективная поверхностная энергия является температурнозависимой характеристикой, в интервале температур хрупко-пластичного перехода изменяется на 2—3 порядка и имеет единую с пределом текучести термоактивационную природу.  [c.188]


Смотреть страницы где упоминается термин Разрушение в температуры : [c.301]    [c.103]    [c.104]    [c.266]    [c.164]    [c.152]    [c.516]    [c.31]    [c.361]    [c.435]    [c.476]    [c.387]    [c.13]    [c.18]    [c.90]    [c.454]   
Кавитация (1974) -- [ c.431 , c.434 , c.443 ]



ПОИСК



169 — Влияние электролитического разрушению 8, 12, 239 — Зависимость от температуры 234, 240, 241 Определение

Влияние температуры деформирования на неупругне процессы без разрушения

Влияние температуры на сопротивление разрушению, пластичность и вязкость

Влияние термической обработки иа склонность сварных конструкций к хрупким разрушениям при комнатной температуре

Вязкость разрушения — Зависимость от температуры

Вязкость разрушения — Зависимость от температуры сосуда

Деформация и разрушение при комнатных температурах

Диаграмма истинная деформация — температура и структурные аспекты разрушения металлов

Длительное разрушение при высоких температурах. Вязкое разрушение

Зависимость времени до разрушения при ползучести от напряжения и температуры

Мак Генри X. И. Механика разрушения и ее применение для расчета конструкций, работающих при низких температурах

Махутов Кинетика развития малоциклового разрушения при повышенных температурах

Методы испытания на локальные разрушения металла в околошовной зоне при высоких температурах эксплуатации

Определение сопротивления разрушению Кс деталей с трещинами с учетом влияния циклического повреждения и низкой температуры

Отпускная хрупкость и межкристаплитное разрушение при повышенных температурах

Оценка склонности сварных соединений к хрупкому разрушению — Особенности технологии сварки сталей при низких температурах

Ползучесть и разрушение металлов при высоких 1 температурах

Предел длительной прочности — Влияние времени до разрушения и температур

Проба для определения температуры хрупкого разрушения

Работа разрушения температуры испытания

Разрушение поверхности трения в результате действия температуры

Разрушение при высоких температурах

Разрушение при ползучести под действием циклически изменяющейся температуры

Разрушение при ползучести при переменных циклических напряжениях и переменных температурах

Сопоставление различных методов оценки склонности материалов к хрупкому разрушению по критической температуре хрупкости

Сталь зависимость времени до разрушения от температуры

Текучесть и разрушение алюминиевых сплавов и хромоникелевых сталей при низких температурах в условиях сложного напряженного состояния

Температура переходная при инициировании разрушения

Температура переходная при инициировании разрушения при распространении разрушения

Температура переходная — Влияющие факторы разрушения

Температура хрупкого разрушения

Температура, влияние на разрушени

Условия разрушения в зависимости температур

Форма автоматных швов определения температуры хрупкоп» разрушения

Характер разрушения трубчатых образцов при нормальной и низких температурах

Хрупкие разрушения при криогенных температура

Хрупкое разрушение при высоких температурах



© 2025 Mash-xxl.info Реклама на сайте