Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропия характеристик прочности металлов

АНИЗОТРОПИЯ ХАРАКТЕРИСТИК ПРОЧНОСТИ МЕТАЛЛОВ  [c.216]

Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом характеристики прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а характеристики пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.  [c.59]


Образование волокнистой макроструктуры приводит к анизотропии механических свойств металла. При этом характеристики прочности в  [c.250]

При изучении вопроса о прочности стали в коррозионных средах необходимо учитывать изменения механических свойств стали и их характеристик (прочности, выносливости и пластичности) под влиянием среды. Эти изменения происходят в зависимости от наличия анизотропии, неоднородности, дефектности и остаточной напряженности металла. Таким образом, при изучении прочности металла  [c.5]

Для более полной оценки анизотропии прочности и ее учета при расчетах следует сопоставлять поля сопротивлений материала с полями действующих напряжений [18]. Дело в том, что ни сами величины наибольших нормальных или касательных напряжений (или деформаций), ни наибольшие сопротивления материала разрушению в отдельности не могут служить критерием прочности анизотропного материала, так как важна взаимная ориентировка этих напряжений и поля соответствующих характеристик прочности. В этом и состоит основная особенность и трудность построения теории прочности анизотропных материалов. Если поле напряжений известно или оно может быть определено, то при благоприятной взаимной ориентировке полей напряжений и сопротивлений анизотропия может быть не только не вредной, но и полезной, так как при этом эффективность использования материала будет наибольшей. Такой подход к использованию анизотропии является весьма перспективным, например для штампового инструмента. Общеизвестный принцип расположения волокон при горячей обработке металлов по конфигурации изделий без должного учета способа нагружения при эксплуатации не во всех случаях оказывается справедливым.  [c.341]

При изучении результатов электросварки электрозакалки, местного наклепа, степени неоднородности и анизотропии свойств ма териалов, а также в других случаях необхо дима оценка свойств металлов в малых объемах. Для этой цели служат микроме ханические испытания, позволяющие полу чить характеристики прочности и пластич ности на образцах малых размеров.  [c.27]

Технологическая деформируемость включает понятия штампуемость и допустимое формоизменение . Штампуемость — сравнительная обобщенная характеристика, отражающая возможность пластической обработки металла до требуемой степени деформации. Штампуемость зависит от качества и физического состояния металла, а именно химического состава, характеристик прочности, пластичности, анизотропии, размеров зерна и структурного состояния, объема неметаллических включений, склонности металла к деформационному старению, микрогеометрии поверхности листового проката, наличия внешних и внутренних дефектов и пр.  [c.18]


Единичные кристаллы металлов всегда анизотропны, потому что атомы образуют в иих кристаллическую решетку правильного строения и степень густоты расположения атомов для различных направлений различна. Изотропия поликристаллического металла объясняется тем, что кристаллические зерна чрезвычайно малы по сравнению с образцом и расположены в беспорядке таким образом, все ориентации зерен равновероятны и в среднем для всех направлений свойства оказываются одинаковыми. Обработка давлением — ковка, штамповка, протяжка, волочение — создает определенную ориентацию зерен, поэтому, например, свойства проката в продольном н поперечном направлениях будут различными. Такая анизотропия в меньшей мере относится к упругим свойствам, чем к пластичности и прочности. Модуль упругости для продольных и поперечных по отношению к направлению проката образцов почти одинаков, тогда как характеристики прочности, например сопротивление разрыву, различны.  [c.29]

Рис. 3.77—3.79 позволяют оценить, насколько велико влияние анизотропии металла на форму поверхности прочности. Эти рисунки могут быть использованы при необходимости проверки прочности изделия из анизотропного Легкого сплава или прокатной стали при плоских напряженных состояниях. На рис. 3.77 и 3.78 построены, в сущности, поверхности пластичности, поскольку в качестве исходных характеристик взяты пределы текучести сплавов.  [c.227]

Разработаны отдельные элементы теории пластичности анизотропных тел [20], а также выполнены работы, которые могут быть использованы при дальнейшем развитии этой теории. Теория прочности анизотропных материалов к настоящему времени еще не разработана, хотя этому вопросу посвящены некоторые работы [1, 18]. Сложность заключается в том, что для учета анизотропии прочности при расчетах необходимо экспериментально определить большое количество характеристик. Даже для ортотропной пластинки в общем случае нужно было бы знать в трех ортогональных направлениях три характеристики сопротивления растяжению, три сопротивления сжатию и шесть характеристик сопротивлений срезу. Последнее определяется тем, что характеристики сопротивления действию касательных напряжений по двум взаимно перпендикулярным направлениям не равны (при равенстве касательных напряжений в силу закона их парности). Наглядным примером может служить древесина, у которой сопротивление скалыванию (срезу) поперек волокон может во много раз превышать соответствующее сопротивление вдоль волокон. В определенной мере это относится и к металлам с резко выраженной волокнистой структурой.  [c.340]

Из всех методов определения механических свойств металлов наилучшие результаты дает испытание на растяжение, которое позволяет определить прочностные характеристики (предел текучести, предел прочности и др.), показатели пластичности (относительное удлинение и относительное сужение, коэффициент анизотропии), н также другие показатели, приведен- ,2  [c.489]

Напряжения второго рода возникают главным образом вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы (например, в черных металлах феррит, аустенит, цементит, графит), обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различны. Структуры, представляющие собой смесь фаз (например, перлит в сталях), а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла, обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутризеренные и межзеренные напряжения еще в процессе первичной кристаллизации и при последующих превращениях во время остывания. При высоких температурах напряжения уравновешиваются в силу пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (в силу различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (в силу различия и анизотропии механических свойств), а также при наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.153]


Вышеперечисленные факторы могут оказывать определенное влияние на характеристики механических свойств и жаропрочность металла. Так, например, участки с неразбитой литой структурой в турбинном диске в связи с создаваемой ими анизотропией механических свойств могут привести к перераспределению напряжений, изменению запасов прочности и в ряде случаев к разбалансировке диска в условиях эксплуатации. Неблагоприятное расположение волокон (например, в заготовке турбинной лопатки) по этой же причине вызывает понижение ее конструктивной прочности.  [c.238]

Ввиду повышенной склонности аустенитных сталей и сплавов к ликвации и литейной усадке, их обычно разливают в мелкие слитки. Это обстоятельство затрудняет возможность использования больших уковов, высокой степени деформации литого металла с целью устранения дефектов его структуры. Химическая и структурная неоднородность слитка проявляется в готовом прокате в виде строчечности, обусловливающей, как мы уже знаем (см. гл. IV), повышенную опасность появления околошовных трещин. Строчечность стали является одной из причин анизотропии ее механических свойств, особенно по толщине листа. Анизотропия проявляется также в различии характеристик прочности и пластичности аустенитной стали вдоль и поперек прокатки (табл. 106), а не только по толщине металла. Особенно чувствительными к строчечности аустенитной стали или сплава являются такие показатели, как ударная вязкость и относительное удлинение, а также реакция на нейтронное облучение [И, 12].  [c.396]

Рассмотренные выше данные приводят к следующему выводу — металл после ТМО анизотропен и его анизотропность аналогична обычной анизотропности горячедеформированного металла собственно влияние ТМО проявляется в приросте абсолютных значений характеристик прочности. Но такой вывод односторо-нен, так как является следствием традиционного метода определения анизотропии — испытанием вдоль и поперек волокна. Трудно ожидать, что ВТМО или даже  [c.9]

Необходимость оценки свойств металлов в малых объемах (гварных швов, околошовной зоны, поверхностно закаленных или насыщенных слоев, местного наклепа, степени неоднородности и анизотропии свойств материалов и т. д.) вызвала появление методов мнхромеханичесюлх испытаний, при которых возможно получение основных характеристик прочности и пластичности в результате испытания образцов весьма малых размеров.  [c.23]

Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Коэффициент запаса прочности зависит от многих факторов, к которым можно отнести разброс свойств данного металла по пределу текучести, пределу длительной прочности и пределу ползучести, анизотропию свойств металла детали, масштабный фактор и механические характеристики при одноосном напряженном состоянии. К этим факторам можно отнести также возможность пульсирующей нагрузки (с переменными интервалами по времени и температуре), степень корродирования (и вид его) по времени и эрозионный износ. Большое значение имеет степень ответственности детали, в частности — опасность в случае аварии для персонала станции, особые пусковые и аварийные режимы, термические напряжения, переходная температура хрупкости, состояние поверхности, уровень остаточных (в том числе в поверхностном тонком слое) напряжений, концентрация напряжений и целый ряд других важных факторов.  [c.27]

Из большого числа вариантов термомеханической обработки наиболее перспективна высокотемпературная термомеханическая обработка (ВТМО) как по технологическим возмол<ностям, так и по влиянию на комплекс прочностных характеристик. Одиако использование тер-момеханическн упрочненного проката возможно в редких случаях, когда для изготовления деталей не требуется применения значительной обработки резанием. С другой стороны, ВТМО может быть использована для повышения эксплуатационной долговечности деталей в результате улучшения прочностных свойств конструкционных сталей с одновременным решением задачи формоизменения заготовок до нужных размеров. Возможность добиться таким образом снижения расхода металла, увеличения рабочих нагрузок в машинах, а кроме того, и упрочнения деталей с переменным по сечению химическим составом (например, с покрытиями или подвергнутых химико-термической обработке поверхности) делают актуальной задачу осуществления ВТМО на заготовках или деталях машин. Однако для использования упрочняющего эффекта ВТМО с целью повышения эксплуатационных характеристик деталей машин необходимо решить комплекс технологических задач, касающихся вопросов взаимосвязи ВТМО с технологией формообразования качественных, высоконадежных деталей. К числу таких задач относится разработка вопросов направленности упрочнения при ВТМО, являющихся составной частью обшей теории высокопрочного состояния сталей. Отсутствие теоретических предпосылок образования оптимальной анизотропии свойств деталей при ВТМО не позволяет прогнозировать и получать необходимый уровень прочности в зонах наибольшей нагруженности деталей, а также формулировать принципы проектирования технологического оборудования, обеспечивающего необходимые для термомеханического объемно-поверхностного упрочнения схемы деформации.  [c.4]



Смотреть страницы где упоминается термин Анизотропия характеристик прочности металлов : [c.84]    [c.337]   
Смотреть главы в:

Анизотропия конструкционных материалов Изд2  -> Анизотропия характеристик прочности металлов



ПОИСК



227, 264, 313 329 — Анизотропия Характеристика

Анизотропия

Металлы характеристика

Металлы, анизотропия

Прочность Анизотропия

Прочность металлов



© 2025 Mash-xxl.info Реклама на сайте