Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам Упругие свойства

ВОЛЬФРАМ Физические свойства В табл. 2 приведены физические свойства вольфрама. Металл отличается высокой температурой плавления, превосходящей температуру плавления всех элементов, кроме углерода, низкой упругостью пара, малой скоростью испа- 2. Физические свойства вольфрама и молибдена  [c.447]

Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]


Содержание С, Мп, Si, Сг, Ni, Va и W в количествах, указанных в табл. 1, определяет эффективность процессов термообработки и повышение упругих свойств и прочности пружинной стали [7, 19 и 41]. Легирующие присадки повышают предел упругости пружинной стали, приближая его к пределу прочности [30]. Ванадий и вольфрам включаются в материал для пружин особо ответственного назначения, а также для пружин, работающих при повышенных температурах.  [c.649]

В то же время обнаружено, что для некоторых вариантов расчета коэффициентов вариации случайных деформаций и напряжений в порошковых композитах (вольфрам-медь, железо-медь) и наполненных полимерах с учетом действительных моментных функций упругих свойств и с использованием гипотезы о их предельной локальности, результаты расчетов могут отличаться в два и более раз. Вычисление дисперсий напряжений в компонентах композитов без учета действительных моментных функций вообще приводит к нулевым и даже отрицательным значениям, что противоречит физическому смыслу.  [c.56]

Сведения о применении вакуумных микровесов для изучения процессов в чистом фторе или его соединениях в литературе отсутствуют. Объясняется это, по-видимому, тем, что к общим трудностям использования такого чувствительного вакуумного прибора, как микровесы, добавляются еще трудности, связанные с коррозионной агрессивностью фтора и его соединений, которая сильно ограничивает возможности выбора материалов для изготовления микровесов. В частности, невозможно применение таких классических по своим упругим свойствам материалов, как кварц и вольфрам, являющихся основными для изготовления практически всех известных в настоящее время моделей вакуумных микровесов. Поэтому всякие новые данные в этой области представляют большой интерес.  [c.152]

К самым выдающимся физическим свойствам вольфрама относятся, конечно, его высокая температура плавления (3410°) и высокий модуль упругости, по которым он превосходит все металлы, а также низкое давление его паров и малый коэффициент сжимаемости, которые являются самыми низкими по сравнению со всеми остальными металлами. Его плотность, равная 19,3 г см , соответствует плотности золота, но меньше, чем у платины, иридия, осмия и рения. Благодаря высокой плотности и сравнительно большому поперечному сечению захвата тепловых нейтронов вольфрам является эффективным защитным материалом.  [c.145]

Вакуумные материалы и геттеры. Вакуумную аппаратуру изготовляют из материалов, обладающих в рабочем интервале температур низкой упругостью пара, малой распыля-емостью и небольшим коэффициентом линейного расширения. Такими материалами (свойства их см. ниже) являются вольфрам и молибден. При известных условиях полностью отвечают требованиям вакуумной техники железо, никель и различные их сплавы, а также тройные сплавы Ре — N1—Мо и Ре—N1—Со.  [c.350]


Сварка вольфрама. Вольфрам имеет две модификации — а и . Ниже температуры полиморфного превращения 903 К -фаза переходит в а-фазу с решеткой объемно-центрированного куба. Вольфрам устойчив в соляной, серной и других кислотах, в расплавленных натрии, ртути, висмуте. С азотом и водородом вольфрам не взаимодействует до температуры плавления. На воздухе устойчив до 673 К- Вольфрамовые сплавы содержат в небольших количествах такие легирующие элементы, как ниобий, цирконий, гафний, молибден, тантал, рений, окись тория. Основной целью легирования вольфрама является повышение его пластичности, так как технически чистый вольфрам при 293 К имеет относительное удлинение, близкое к нулю. Среди" тугоплавких металлов вольфрам имеет наиболее высокие следующие параметры температуру плавления, модуль упругости, коэффициент теплопроводности и низкую свариваемость. Для диффузионной сварки вольфрама в вакууме может быть рекомендован режим Т = 2473 К, р 19,6 МПа, /=15 мин, который обеспечивает свойства соединений, близкие к свойствам основного металла.  [c.155]

Если условие вида (2.11) справедливо для кристаллов с ГЦК или ОЦК решеткой, то они также будут обладать свойствами упругой изотропии. В табл. 2.1 представлены значения коэффициентов упругости при Т — 293 К для кристаллов некоторых металлов с ГЦК и ОЦК решетками. Отличие параметра А = (С — i2)/(2 44) от единицы характеризует степень анизотропии упругих свойств. Практически изотропным металлом является вольфрам, близок к изотропному материалу алюминий.  [c.62]

Высокотемпературные минералокерамики на основе окислов или карбидов металлов имеют существенные недостатки низкую ударо- и вибропрочность и низкую прочность на растяжение. Устранение этих недостатков путем армирования керамики высокопрочными волокнами металлов (вольфрам, молибден) представляет перспективное направление в материаловедении. Повышение эксплуатационных качеств армированных материалов зависит не только от прочностных и упругих свойств волокон и их концентрации, но и от характера распределения волокон в объеме материала [7]. Армирование может производиться как отдельными волокнами или лентами, так и заранее сплетенными плоскими или объемными сетками.  [c.120]

Присадка кремния (до 2%) повышает упругие качества стали и сопротивление повторным ударным нагрузкам. Ванадий (0,1—0,2%) и вольфрам (до 1,2%) вводят для повышения механических свойств и температуростой-кости. Для пружин ответственного назначения применяют вольфрамокремнистые и хромокремневанадиевые стали, обладающие наиболее высокими механическими свойствами.  [c.155]

По твердости, пределу прочности и модулю упругости некристаллизованный молибден, как и вольфрам, относится к металлам с высокими механическими свойствами.  [c.40]

Тунгстен, как его называют в Америке, известный в Европе под названием вольфрам ,— металл с уникальными свойствами, благодаря которым его применяют при обработке резанием и штамповке других металлов, а также в условиях высоких температур. Он имеет самую высокую температуру плавления (3410°) и самое низкое давление пара среди остальных металлов. Вольфрамовая проволока имеет самый высокий предел прочности при растяжении и предел текучести до 420 кг1мм . Вольфрам — один из наиболее корроэионностойких материалов. По плотности он уступает лишь металлам платиновой группы и рению. После соответствующей обработки этот Металл становится упругим и пластичным. Его соединение с углеродом — самое твердое из известных веществ, содержащих металл.  [c.136]

Сц11 = 2222 = 3333. (Здесь не упоминаются нулевые константы Кроме того, можно указать на наличие тождеств, вытекающих из требований объемной симметрии = Ср г -) Для тел с упругой изотропией (среди кристаллов таким свойством с хорошим приближением обладает, например, вольфрам) имеет место условие Сз == 0. При этом константы = ,1 называют постоянными Ламе.  [c.15]

Легированными сталями называются стали, содержащие в своем составе, кроме обычных элементов, еще и специальные примеси хром, вольфрам, кобальт, никель, ванадий, молибден, титан, алюминий и медь — или же имеющие увеличенное содержание марганца и кремния. Каждый из легирующих элементов в отдельности сообщает стали особые свойства. Например, хром способствует уменьшению зерна, увеличивает прочность, твердость, износостойкость, жаростойкость, стойкость, против коррозии и прокаливаемость стали. Никель повышает прочность, вязкость, жаростойкость и сопротивляемость коррозии. Вольфрам придает стали красностойкость и увеличивает прокаливаемость стали. Молибден повышает прочность, твердость и жароустойчивость, но снижает пластичность и вязкость. Кобальт повышает прочность и пластичность. Кремний при содержании его свыше 0,8% повышает упругость, прочность и твердость, но снижает ударную вязкость. Л1арганец при содержании свыше 1 % повышает прочность и твердость, увеличивает прокаливаемость и несколько снижает ударную вязкость. Титан придает сталям твердость и способствует образованию мелкозернистой структуры. Алюминий повышает жароустойчивость и способствует созданию хороших условий для азотирования стали. Медь повышает устойчивость против коррозии и против действия кислот.  [c.15]


Хром сообщает стали твердость, улучшает ее прокаливаемость и повышает сопротивление износу вольфрам увеличивает твердость и режущую способность стали ванадий придает стали большую плотность и повышает вязкость и упругость стали кремний повышает износоустойчивость стали марганец дополнительно уменьшает деформацию стали в процессе закалки азот з еличивает твердость стали и улучшает ее режущие свойства кобальт, в быстрорежущих сталях, способствует увеличению стойкости режущего инструмента, причем увеличение процентного содержания кобальта примерно прямо пропорционально увеличению допустимой скорости резания инструмента.  [c.637]

Хром сообщает стали твердость, улучшает ее прокаливаемость и повышает сопротивление износу вольфрам увеличивает твердость и режущую способность стали ванадий придает стали ббльшую плотность, повышает вязкость и упругость стали кремний повы шает износоустойчивость стали марганец дополнительно уменьшает деформацию стали в процессе закалки азот увеличивает твердость стали и улучшает ее режущие свойства.  [c.786]

Электротехнические и магнитные материалы. Электрические контактные материалы должны обладать разнообразными свойствами высокой красностойкостью, жаропрочностью и сопротивлением электрической эрозии, соответственно высокими тепло- и электропроводностью, малой упругостью пара кроме того, не должно наблюдаться сваривания и прилипания при искрении. Лучшее сочетание этих свойств достигается в металлокерамических материалах. Кроме вольфрама и других ту-гонлавких элементов, применяется сплав, состоящий в основном из карбида вольфрама и кобальта, и сплавы для более легких условий работы на серебряной основе се-ребро-графит, серебро-никель, серебро-окись кадмия, серебро-окись свинца, сереб-ро-никель-вольфрам (или молибден) и др.  [c.1497]

НО высокими тепло- и электропроводностью, малой упругостью шара кроме того, не должно наблюдаться сваривания и прилипания при искрении. Лучшее сочетание этих свойств достигается в металлокерамических материалах. Кроме вольфрама и других тугоплавких элементов применяется сплав, состоящий в основном из карбида вольфрама и кобальта, и сплавы для более легких условий работы на серебряной основе серебро-графит, серебро-никель, серебро-окись кадмия, серебро-оюись свчица, серебро-ни-кель-вольфрам (или молибден) и др.  [c.985]

Особенности диффузионной сварки никеля и его сплавов определяются их свойствами и составом, в частности термодинамической прочностью окисной пленки, сопротивлением ползучести и деформационной способностью металла. На чистом никеле при нагреве образуется только один окисел NiO, имеющий сравнительно высокую упругость диссоциации 1,3-10 — 1,3-10 Па при 1273— 1373 К. Однако никель, как -переходный металл, образует с кислородом устойчивый хемосорбированный комплекс. Удаление кислорода обусловлено его диффузией при сварке в глубь металла. Растворимость кислорода в никеле составляет 0,012% при 1473 Кис понижением температуры увеличивается. Расчеты показывают, что длительность растворения окисной пленки толщиной 0,005 мкм в никеле при температуре 1173—1473 К изменяется от нескольких секунд до десятых долей секунды. Поэтому окисная пленка на никеле не вызывает особых затруднений при сварке. Электротехнические никелевые сплавы типа монель и константан также образуют термодинамически непрочные окислы, близкие к никелю по другим свойствам, и их сварка существенно не отличается от сварки никеля. Жаропрочные никелевые сплавы являются сложнолегированными и имеют в своем составе хром, алюминий, титан, молибден, вольфрам, ниобий и другие элементы, обладающие большим сродством к кислороду и обеспечивающие высокую жаростойкость и жаропрочность. Именно эти свойства и затрудняют диффузионную сварку жаропрочных сплавов. Наличие весьма прочной и трудно удалимой окисной пленки, богатой хромом, алюминием, титаном, препятствует диффузионной сварке. Удаление этих окислов из стыка связано с протеканием сложных окислительно-восстановительных процессов.  [c.163]


Смотреть страницы где упоминается термин Вольфрам Упругие свойства : [c.103]    [c.69]    [c.136]    [c.145]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.398 ]



ПОИСК



Вольфрам

Вольфрам—Свойства

Свойство упругости

Упругие свойства



© 2025 Mash-xxl.info Реклама на сайте