Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая Процессы — Характеристика

Для регистрации термических и механических характеристик процесса нашли применение электронно-механические и электронные приборы.  [c.221]

ТЕРМИЧЕСКАЯ И химико-термическая ОБРАБОТКА СТАЛИ Характеристика и назначение процессов  [c.666]

Электроэнергия является единственным возможным энергоносителем в таких производствах, как электрохимия, электрометаллургия и т. д., а также в случаях весьма высокой температурной характеристики обслуживаемых процессов (t > 2000° С) и необходимости особо точной и широкой температурной регулировки обслуживаемых термических процессов.  [c.10]


Таким образом, приведенные примеры показывают, что полная идентификация условий опыта, в связи с проведением эксперимента на одном образце, обеспечивает надежную сопоставимость дилатометрических, термических и электрических характеристик процесса и позволяет установить между ними ту или иную действительную зависимость.  [c.136]

Наиболее распространенными операциями термической обработки являются отжиг, нормализация, закалка, отпуск и обработка холодом. Для зубчатых колес также широко используются методы химико-термической обработки. Общая характеристика основных процессов термической обработки зубчатых колес приведена в табл. 1.  [c.609]

Многие исследователи при изучении влияния химико-термических процессов на механические свойства сталей ограничивались определением одной из характеристик — предела выносливости, или максимум двух — предела прочности при изгибе и ударной вязкости.  [c.168]

Когда электрические, термические и другие характеристики разряда в процессе его протекания остаются неизмененными, имеет место стационарный разряд наоборот, нестационарный разряд имеет место в том случае, когда указанные характеристики изменяются во времени. Частной разновидностью нестационарного разряда является импульсный разряд продолжительностью в 10- — 10 сек. Такие разряды, получившие наименование искровых , используются в технике для обработки металлов.  [c.33]

Изучение изнашивания деталей машин и результаты лабораторных исследований изнашивания металлов на испытательных машинах показали, что в процессе изнашивания происходят упрочнение и разупрочнение металла, термические процессы закалки и отпуска, изменение химического состава вследствие химических реакций и диффузионных явлений [1, 2 и 3]. Поэтому очевидно, что характеристики износостойкости металлов можно обоснованно связывать не с их исходными механическими свойствами, а со свойствами вторичных структур, образующихся на поверхностях трения в процессе изнашивания.  [c.152]

В книге кратко освещены основы теории тепло-.и массообмена в процессе сушки, а также ее кинетика и динамика и приведены термодинамические характеристики влажного газа. Подробно рассмотрены методы инженерного расчета сушилок с определением их габаритов при различных способах подвода тепла и при совмещении сушки с другими термическими процессами (прокаливание, химическое разложение и т. д.). Описаны технологические схемы сушки различными методами, конструкции наиболее распространенных в химической промышленности сушильных аппаратов и перспективные комбинированные установки.  [c.450]


В первой области существования дисперсных потоков — области потоков газовзвеси — согласно теоретическим и опытным данным (гл. 6) увеличение концентрации при прочих равных условиях может вызвать значительное увеличение интенсивности теплообмена. Такой результат был объяснен улучшением теплофизических характеристик, радиальным теплопереносом и положительным влиянием твердых частиц на теплообмен в пограничном слое. Этот эффект до определенного предела перекрывает отрицательное влияние роста концентрации на пульсации газа (гл. 3) и на скорость межкомпонентного теплообмена в газовзвеси (гл. 5). Однако во в т о-рой области дисперсных потоков — области потоков флюидной взвеси— увеличение насыщенности газового потока твердыми частицами сверх Ркр не только меняет структуру потока, но и содействует постепенному сближению растущего термического сопротивления ядра потока и понижающегося термического сопротивления пристенной зоны. Наконец, при определенных значениях растущей концентрации и определенных условиях движения потока могут сформироваться условия, при которых в решающей степени скажется отрицательное влияние стесненности движения частиц на теплообмен. В этом случае рост концентрации приведет не к повышению относительной интенсивности теплоотдачи, а к ее падению— процесс уже прошел через максимум.  [c.255]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Картина изолиний концентраций окислов азота в поле универсальной токсической характеристики обратная. В области наиболее эффективного сгорания (а - 1,0. .. 1,1), где концентрации СО и С Н, минимальны, окислы азота имеют наибольшие концентрации, что объясняется высокими температурами процесса сгорания и достаточным количеством кислорода для ведения термических реакций образования N0. В зоне мощностного обогащения смеси (а 0,9. .. 0,95) концентрации N0 несколько ниже, хотя температуры сгорания максимальны. Здесь сказывается недостаток кислорода. На режимах холостого и принудительного холостого хода окислы азота практически отсутствуют.  [c.17]

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких температурах. Газовая коррозия металлов имеет место при работе многих металлических деталей и аппаратов (металлической арматуры нагревательных печей, двигателей внутреннего сгорания, газовых турбин, аппаратов синтеза аммиака и др.) и при проведении многочисленных процессов обработки металлов при высоких температурах (при нагреве перед прокаткой, ковкой, штамповкой, при термической обработке и др.). Поведение металлов при высоких температурах имеет большое практическое значение и может быть описано с помош,ью двух важных характеристик — жаростойкости и жаропрочности.  [c.16]

I. Общая характеристика процессов химико-термической обработки стали  [c.227]

Характер структурного упорядочения определялся о помощью рентгенографического анализа образцов ленты, активационные характеристики процесса — дифференциальными термическими методами.  [c.70]


Механические свойства сталей и сплавов определяются их химическим составом, структурой и отсутствием или наличием различного типа дефектов. Вьппе бьши рассмотрены основные типы и виды дефектов, характерные для сварных соединений. В настоящем разделе остановимся на рассмотрении ряда особенностей, связанных с неоднородностью химического состава и структуры сварных соединений, которые определяют механические характеристики металла шва, зоны термического влияния, зоны сплавления и других локальных участков. При этом необходимо иметь в виду, что развитие дефектов происходит именно в данных участках, а работоспособность сварных соединений определяется комплексом сложных процессов, связанных с механическими характеристиками металла различных зон, геометрическими размерами последних, видом и условиями нагружения, типом дефекта и др.  [c.13]

Применение термодинамических потенциалов и, I, Р, Ф для анализа процессов изменения состояния тела и определения производимой при этом работы и количества полученной телом теплоты представляет собой наиболее общий метод термодинамического анализа. Общность и универсальность этого метода объясняются тем, что знание хотя бы одного из термодинамических потенциалов позволяет определить как термическое, так и калорическое уравнения состояния тела, а следовательно, и все основные термодинамические свойства тела и характеристики происходящего с ним процесса.  [c.159]

В настоящее время методы газовой хроматографии нашли применение при определении характеристик широкого круга физико-химических процессов (определение упругости пара, скрытой теплоты парообразования, коэффициента диффузии), а также состава продуктов горения и термического разложения при исследовании процесса горения топлива. При исследовании рабочих процессов в тепловых двигателях наибольший интерес представляет использование хроматографических методов для определения как качественного, так и количественного состава газовой смеси.  [c.302]

Локальные флуктуации приводят к нарушению термического механического, диффузионного (химического) равновесия. Нарушение термического равновесия связано с локальными флуктуациями температуры, нарушение механического равновесия — с флуктуациями давления. Диффузионное равновесие нарушается вследствие флуктуаций химического потенциала, которые для термически и механически однородной системы обусловлены локальными флуктуациями концентраций компонентов. Если система находится в состоянии устойчивого равновесия, то последующая временная эволюция возникшей флуктуации приводит к возврату системы в равновесное состояние. Согласно гипотезе Онзагера,. пространственно-временная эволюция флуктуаций в среднем описывается законами неравновесной термодинамики ( 7.7). Таким образом, флуктуации позволяют охарактеризовать устойчивость состояния равновесия по отношению к непрерывным изменениям состояния системы и, кроме того, получить информацию о некоторых свойствах динамических характеристик неравновесных процессов.  [c.150]

Задача 3.2. Водяной пар, начальное давление которого Рх =- 0,3 МПа и температура I = 150 °С, изотермически сжимается до уменьшения объема в три раза. Определить термические параметры начального и конечного состояний пара, изменения его удельных калорических параметров и энергетические характеристики процесса (удельные работу и теплоту).  [c.70]

Носителями наследственной информации являются материал детали и ее геометрические формы. При протекании технологического процесса носители наследственной информации как бы про-ходят через различные барьеры, задерживаясь на них частично или полностью [226]. Так для многих прочностных характеристик существенным барьером являются термические операции, а такие характеристики качества, как отклонения фактической формы заготовок от идеальных, как правило, в той или иной форме передаются от одной операции к другой. В ряде случаев наследуются отдельные конструктивные элементы изделия, которые оказывают влияние на результаты технологического процесса, например, из-за переменной жесткости изделия. В этих случаях происходит как бы копирование формы заготовки и перенос этих отклонений в уменьшенном размере на готовое изделие.  [c.471]

Не менее важной характеристикой, чем жаростойкость покрытия, является его адгезионная прочность. Только в случае высокой адгезии покрытие успешно противостоит воздействию термических напряжений и длительное время сохраняет свое функциональное назначение. Адгезия зависит от многих факторов процесса изготовления, нанесения и формирования покрытия из ОСМ. Но наиболее суш,ест-венно на адгезионную прочность покрытия влияет соотношение компонентов, входящих в состав органосиликатной композиции.  [c.39]

Существующие наработки лопаток около 10000 ч и указанные выще характеристики процесса разрушения лопаток из-за ползучести при термических циклах нагружения в пределах указанной выше наработки после ремонта позволили утверждать, что потеря длительной статической прочности лопаток была связана с повышенными монтажными напряжениями в сечениях, прилегающих к бандажным полкам лопаток.  [c.623]

Имеется несомненная, в ряде случаев однозначная, связь между электрическими характеристиками и структурным состоянием металлов и сплавов после термической обработки или поверхностного упрочнения. Эти операции создают значительные сжимающие напряжения в поверхностных слоях и способствуют увеличению сопротивления -материалов разрушению. Физическая сущность происходящих при этом процессов связана с кристаллическим строением металлов. Для суждения о глубинных явлениях происходящих в недрах кристаллической решетки проводящих ток материалов, используют механические и физические методы испытаний, основанные на рентгеновском излучении, ультразвуковых колебаниях, магнитных явлениях, термо-э. д. с., электрическом сопротивлении и, наконец, вихревых токах.  [c.3]


Индукционная закалка стали как поверхностная, так и сквозная, находит все большее применение в промышленности. В связи с этим опубликован и ряд работ, содержащих хар жтеристики механических свойств стали, прошедшей индукционный нагрев. Из этих работ можно, повидимому, сделать з ключение, что индукционный метод по его остаточному механическому эффекту по крайней мере не уступает при прочих равных условиях обычным термическим методам закалки. Характеристики механических свойств, однако, разноречивы как по данным разных авторов, так и по видам испытаний. Кроме того, остается совершенно не разъясненным вопрос о мех шизме упрочнения при индукционном нагреве, вполне ли он тождественен с эквивалентным процессом обычной термической закалки или же имеет характерные индивидуальные черты, проистекающие из особенностей индукционного метода.  [c.193]

При ударно-тепловом изнашивании надежность инструментов определяется прежде всего сопротивляемостью термической усталости. Эта характеристика определяется теплостойкостью — способностью сплавов при нагреве рабочей части, возникающем в эксплуатации, сохранять структуру и свойства, пеоб.кодимые для прохождения рабочего процесса (резание, деформиро-ваиие м др.). Теплостойкость сталей с карбидиьш упрочнением связана больше всего со свойствами твердого раствора. Чем выше температура фазового превращения, тем больше теплостойкость стали.  [c.166]

Термическая и химико-термическая обработка применяются с целью изменения физико-механических и физико-химических свойств металлов, определяющих технологические и эксплуатационные характеристики деталей. Улучшение свойств металла при термической обработке является следствием структурных и фазовых изменений, а также изменений напряженного состояния металла (отжиг, нормализация, закалка и отпуск, улучшение, старение). Химико-термические процессы протекают с диффузионным насыщением поверхностных слоев деталей различными элементами при этом химический состав поверхностного слоя изменяется. С этой целью применяют цементацию (науглероживание), азотирование, цианирование, алитирование, хромирование, силици-рование. В результате неравномерности нагрева и охлаждения при термической обработке возникают термические напряжения, а неравномерность структурных превращений во времени и по сечению данной заготовки вызывает структурные напряжения. Все это приводит к деформации деталей.  [c.234]

При подаче напряжения на электроды начинается процесс растворения материала заготовки-анода. Растворение происходит главным образом на выступах микроиеровностей поверхности вследствие более высокой плотности тока на их вершинах. Кроме того, впадины между микровыступамн заполняются продуктами растворения оксидами или солями, имеющими пониженную проводимость. В результате избирательного растворения, т. е. большей скорости растворения выступов, микронеровности сглаживаются и обрабатываемая поверхность приобретает металлический блеск. Электрополирование улучшает электрофизические характеристики деталей, так как уменьшается глубина микротрещин, поверхностный слой обрабатываемых поверхностей не деформируется, исключаются упрочнение и термические изменения структуры, повышается коррозионная стойкость.  [c.406]

Дислокации — не единственные дефекты кристалла известны также вакансии и межузельные атомы, образующиеся при переходе атома из узла кристаллической решетки в пространство между узлами. Межузельные атомы образуются в кристалле самопроизвольно, вследствие термических флуктуаций. Поэтому число их зависит от температуры при пониже1п и температуры число вакансий и межузельных атомов в чистом, т. е. не содержащем примесей, кристалле убывает до нуля. Дислокации, наоборот, не исчезают с уменьшением температуры. Можно считать, что число дислокаций с изменением температуры меняется незначительно, если только температура достаточно удалена от температуры плавления. При приближении к точке плавления число дислокаций быстро уменьшается. Дислокации не возникают в кристалле сами по себе, они образуются в процессе образования кристалла или в результате внешнего воздействия на кристалл. Дислокации являются важными характеристиками кристаллического состояния. В ядре дислокации (т. е. в окрестностях ее оси) атомы смещаются из положения равновесия, и в решетке возникают внутренние напряжения. С этой точки зрения дислокацию можно считать источником внутренних напряжений.  [c.368]

Следует отметить, что приведенные реакции не отражают механизмов протекания процессов и являются результирующими. Сравним характеристики пленок, получаемых термическим и плазмохимическим осаждением из парогазовой смеси. Составы пленок соответственно характеризуются формулами 51 N4 (Н) и 51ЫгН,,,  [c.46]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

Согласно вышеизложенной термофлуктуационной концепции разрушение полимерных тел следует рассматривать как процесс термической деструкции, ускоренной механическими напряжениями. Влияние темпе-paTypi.i на объемные свойства полимеров и связь их с характеристиками трершя и износа показаны на рис. 4.8.  [c.94]

Задача 2. Исследовать влияние давления в конденеато-ре на характеристики цикла ПТУ с насыщенным паром. Для этого установить все регулируемые параметры на пульте управления стендом (рис. 10.15) в соответствии с изложенными выше рекомендациями и, изменяя давление Рк от 3 до 10 кПа, измерить основные характеристики ПТУ. Построив соответствующие графики, оценить во сколько раз (нд сколько процентов) увеличивается мощность и КПД, если Рк уменьшается на 1 кПа, например от 5 до 4 кПа. Изобразить два цикла при различных рк в Т, 5-диа-грамме, а процессы расширения в турбине — в к, 5-диаграмме. Рассчитать среднюю температуру подвода теплоты, термический КПД цикла и сравнить полученные результаты с показаниями приборов.  [c.271]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]


В процессе термической обработки в покрытиях протекают структурно-фазовые изменеиня, влекущие за собой изменение магнитных свойств На рис 19 представлено изменение магинтных характеристик Со—Р-покрытии различного состава от температуры отжига Увеличение магнитных характеристик в области температур 350—500 С связано с процессом распада а-твердого раствора, образования и выделения фазы фосфида Со Р  [c.60]

Образованные в результате реакций (2.19) и (2.20) сидячие дислокационные конфигурации (см. рис. 2.10) вызываютШоявление температурной зависимости сопротивления движению дислокаций. Обусловлено это тем, что для движения винтовой дислокации внешнее напряжение и термическая активация должны обусловить протекание процесса редиссоциации, т. е. образования перетяжек [831 на расщепленной дислокационной линии, после чего только она получит возможность перемещаться. Фактически достаточно подтянуть к центру расщепления хотя бы один из дефектов упаковки. Данная модель редиссоциации винтовых дислокаций [82, 83] объясняет не только температурную зависимость прочностных характеристик, но и асимметрию скольжения в  [c.48]

Экспериментальные данные [57] по температурной зависимости пределов упругости стя и неупругости стл для железа показывают (рис. 2.42), что только увеличение стя в области температур ниже 50 К можно считать результатом вклада напряжения Пайерлса. Выше 50 К термическая активация сводит на нет вклад напряжения Пайерлса в прочностные характеристики железа и поэтому основную роль здесь уже должны будут играть примеси и процесс редиссоциации дислокаций [82, 83]. В пользу последнего свидетельствует значительный рост напряжения ол после возрастающих степеней пластической деформации (рис. 2.42).  [c.97]

Наряду с внешними факторами усталость определяется физическими характеристиками материала теплопроводностью, термическим расширением, макронеоднородностыо. Следует отметить, что термоциклирование может сопровождаться не только появлением усталостных микротрещин, но и существенным формоизменением, т, е. наложением статического механизма повреждения. Одновременное протекание двух различных по характеру процессов при циклических изменениях температуры усложняет изучение термической усталости [220].  [c.128]

Несмотря на изученность процессов распада метастабильных фаз, в настоящее время объем промь]шленного применения упрочняющей термической обработки (закалка + старение) титановых сплавов невелик. Введение упрочняющей термической обработки требует строгой регламентации исходной структуры металла. На основании детального изучения характеристик работоспособности сплавов с различным уровнем прочности в настоящее время рекомендуются следующие режимы упрочняющей термической обработки (табл. 4).  [c.16]

При выборе материалов конструкций необходимо учитывать следующие факторы 1) экономические аспекты, связанные с общим ресурсом работы, и их взаимодействие 2) обрабатываемость материала, позволяющую изготовить деталь требуемой формы или конструкции 3) наличие материала нужной формы и размеров 4) состав композиций и возможность определения требуемых характеристик 5) объем предполагаемой продукции 6) производственный процесс, требования к механической обработке, сборке и инструменту 7) статические и усталостные свойства 8) характеристики пластичности материала 9) сопротивление воздействию окружающей среды 10) противоударные свойства и сопротивление вандализму 11) термическое расширение и теплоизоляционные свойства 12) проблемы безопасности при изготовлении и применении изделия 13) установленные нормативы 14) предварительные капиталовложения, расходы на проведение экспериментов 15) наличие естественных сырьевых ресурсов 16) возможность вторичного использования отходов 17) легкость транспортировки материалов и изделий 18) корпоративную и частную инициативу 19) глобальные факторы международные, государственные, политические и коммерческие.  [c.495]


Смотреть страницы где упоминается термин Термическая Процессы — Характеристика : [c.4]    [c.125]    [c.187]    [c.186]    [c.366]    [c.185]    [c.53]    [c.3]    [c.75]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.535 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.216 ]



ПОИСК



Обработка химико-термическая — Основные характеристики процессов

Общая характеристика процессов химико-термической обработки пали. Цементация

Общая характеристика процессов химико-термической обработки стали

Процесс Характеристика

Теплофизические и гидродинамические характеристики процесса термического опреснения

Термическая характеристика сма

Термические процессы

ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ Общая характеристика процессов химико-термической обработки стали

Характеристика процессов термической обработки

Характеристика процессов термической обработки стальных деталей и инструментов



© 2025 Mash-xxl.info Реклама на сайте