Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые понятия теории упругости и пластичности

МЕХАНИЧЕСКИЕ СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ 1. Некоторые понятия теории упругости и пластичности  [c.84]

Книга по сути дела состоит из двух частей в первых пяти главах излагаются общие основы механики сплошной среды, а в последних четырех — некоторые конкретные ее приложения. За начальной главой, посвященной математическому аппарату, следуют главы, относящиеся к общим вопросам, а именно анализу напряженного состояния, теории деформаций, понятиям движения н течения, а также основным законам механики сплошной среды. Приложения, рассматриваемые в последних четырех главах, относятся к теории упругости, гидромеханике, теории пластичности и теории вязкоупругости, В конце каждой главы приводится набор решенных задач и  [c.7]


В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Напряжения на косых площадках при растяжении. В этой главе мы будем изучать общую теорию напряженного состояния и общие зависимости между напряжениями и деформациями в упругих телах, а также введем некоторые понятия, которые понадобятся в дальнейшем при изучении свойств тел пластических. Систематическое изложение этих вопросов дается в курсах теории упругости и пластичности, мы же изберем путь переходаотпростейших ти-  [c.72]


Разительный контраст между закладываемыми свойствами под-элементов (идеальная пластичность, теория течения) и широким спектром отражаемых эффектов убедительно свидетельствует о действительно важной, определяющей роли, играемой микропласти-ческими деформациями и связанными с ними микронапряжениями в наблЕодаемых эффектах, которые можно объединить общим понятием деформационной анизотропии. Представляется поэтому убедительным, что указанные деформации и напряжения играют роль носителей памяти материала к предыстории его деформирования. Выявление активной роли микронеоднородности заставляет по-новому взглянуть на многие проблемы механики деформируемой среды. Условность границы между упругим и неупругим поведением материала становится совершенно очевидной находят объяснение зависимость между допуском на неупругую деформацию и формой и размерами поверхности текучести, некоторые аномальности (невыпук-лость, отклонение от ассоциированного закона течения), на первый взгляд противоречащие постулату Друккера, и т. п.  [c.140]

Существуют подходы, в которых не используется (по крайней мере в исходных положениях) и концепция предельных поверхностей. Некоторые из них рассматриваются ниже. В одних случаях (физические теории пластичности и модельные представления) предельные поверхности могут быть определены в резул1>тате анализа полученных соотношений. В других (геометрическая теория, основанная на постулате изотропии Ильюшина) понятие предельных поверхностей исключено вовсе. Отметим, что рассмотренные выше соотношения изотропно-трансляционного типа следуют из модельного представления Кадашевича — Новожилова [1958], в котором поведение элемента упруго-пластического тела отождествляется с поведением материальной частицы, перемещающейся с сухим трением под действием внешних сил и реакций упругих связей.  [c.30]


Смотреть страницы где упоминается термин Некоторые понятия теории упругости и пластичности : [c.729]    [c.628]    [c.564]   
Смотреть главы в:

Сварные конструкции Прочность сварных соединений и деформации конструкций  -> Некоторые понятия теории упругости и пластичности



ПОИСК



25 — Понятие упругости — Понятие

Некоторые понятия

ПЛАСТИЧНОСТЬ Теории пластичности

Пластичность — Понятие

Теория пластичности

Теория упругости

Упругость Теория — см Теория упругости

Упругость и пластичность



© 2025 Mash-xxl.info Реклама на сайте