Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Бубнова интегральных уравнений

Замена дифференциальных уравнений интегральными соотношениями, такими как глобальные уравнения количества движения, момента количества движения и энергии, для приближенно заданных законов распределения характеристик движения и состояния является, по существу, частным приемом метода Бубнова.  [c.397]

Авторы справочника [124] отмечают, что к настоящему времени насчитывается свыше 50 приближенных методов решения уравнения (23.5), которые можно разделить на три группы аппроксимации, конечных разностей и интегральные. Методы аппроксимации основаны на замене непрерывной неоднородности участками с постоянными параметрами упругости или с законами г), для которых известны точные решения. Наиболее употребителен при таком подходе способ, основанный на идее метода начальных параметров. Метод конечных разностей может применяться, очевидно, в любой трактовке с использованием различных приемов уточнения решения. В ряде работ задача сводится к интегральному уравнению, которое решается методом последовательных приближений. При использовании ЭЦВМ эффективное решение можно получить методом Рунге—Кутта, сведя предварительно краевую задачу (23.3), (23.5) к задаче Коши, При граничных условиях (23.3) легко построить решение методом Бубнова—Галеркина, приняв функцию X в виде  [c.115]


Большая группа методов приближенного решения задач теплопроводности базируется на интегральной формулировке [например, в виде интегрального соотношения (2.47)]. Эту группу методов называют методами взвешенных невязок. Их особенность состоит в подборе приближенного решения из условия малого рассогласования (невязки) при его подстановке в дифференциальные уравнения теплопроводности и краевые условия. Один из наиболее распространенных - метод Бубнова-Галер-кина [10] - характерен тем, что искомое приближенное решение представляется как линейная комбинация функций, входящих в интегралы взвешенной невязки в качестве весовых.  [c.47]

В этом параграфе разработан метод численного решения линейных краевых задач устойчивости и свободных колебаний слоистых оболочек вращения, объединяющий в себе метод Бубнова — Галеркина для линейных интегральных уравнений Фредгольма второго рода с обобщенной формой метода инвариантного погружения. Изложение метода строится на примере задачи устойчивости и сопровождается указаниями на модификации, необходимые для перехода к задаче  [c.205]

Разработанный здесь метод численного определения матричной функции Грина обладает рядом достоинств, позволяющих рекомендовать его к широкому практическому использованию. В нем эффективно преодолевается сильная численная неустойчивость дифференциальных уравнений неклассической теории слоистых оболочек не вызывает никаких затруднений также и переменность коэффициентов этих уравнений. Сам метод матричной функции Грина как метод решения краевых задач механики оболочек имеет известные преимущества перед другими. Так, в нем не возникает проблем, связанных с построением ортогонального координатного базиса, как в методе Бубнова — Галеркина, или с большой размерностью, а часто и плохой обусловленностью алгебраической системы, как в методе конечных разностей. В задачах устойчивости оболочек использование данного метода позволяет легко и естественно учесть такие факторы, как до-критические деформации, неоднородность распределения докритических усилий в отсчетной поверхности оболочки, краевые условия задачи. В то же время число точек разбиения отрезка интегрирования, необходимое для аппроксимации интегрального оператора, относительно невелико, что приводит к алгебраической задаче невысокой размерности.  [c.222]


Из работ В. А. Бабешко, Е. В. Глушкова и др. [11] известно, что показатель особенности функции д р, ф) при р —) О связан с точками спектра интегрального оператора в одномерном интегральном уравнении контактной задачи. При не слишком малых ск, 3 для нахождения точек спектра используется метод Бубнова-Галеркина, связанный с нахождением корней детерминанта В з) бесконечномерной матрицы. Если В з ) = 0, то д р, ф) е = 3/2 + 3/, (р —> 0). Как показывают расчеты, проведенные при и = 0,3, для задачи а при 2/3 = тг и2а 100° на интервале 8 (-3/2 -1 /2) вблизи точки 5 = -1/2 появляются два дополнительных нуля В(з), которые, если зафиксировать а. и уменьшать угол 2(5, сливаются в двукратный корень, даюш ий особенность вида р С + С2 1пр), а затем сходят с действительной оси и становятся комплексно сопряженными, что приводит к осцилляциям функции контактных давлений при р —> О и отрыву кончика штампа. Для задачи в при достаточно острых углах а замечены нули В з) при  [c.186]

Основная идея метода Бубнова — Галеркина состоит в том, что приближенное решение однородной краевой задачи ищется в виде линейной суперпозиции конечного числа некоторых базисных функций, удовлетворяющих граничным условиям. Коэффициенты разложения определяются из интегральных условий, выражающих ортогональность невязки к каждой базисной функции. Таким образом, задача сводится к решению системы алгебраических уравнений для коэффициентов разложения. В качестве базиса обычно выбираются первые функции какой-либо полной системы. Успех в применении метода определяется выбором базисных функций и числом этих функций, входящих в разложение. При удачном выборе базиса достаточно точные результаты получаются уже при аппроксимации решения сравнительно небольшим числом функций.  [c.28]

В работе 129] полученное в [76] интегральное уравнение решается-методом Бубнова — Галеркина [165].  [c.146]

Система уравнений, описывающая колебания пластины (полосы) и движение всей конструкции как твердого тела, интегрировалась численно с использованием метода Бубнова. При этом ширина смоченной поверхности упругого клина определялась из решения интегрального уравнения (17.17).  [c.177]

Проблема сходимости приближенных решений, построенных по методу Бубнова — Галеркина, к точному решению в том случае, когда оператор — положительно определенный, эквивалентна аналогичной проблеме для процесса Ритца, и поэтому нет нужды в ее самостоятельном рассмотрении. Для других случаев такие исследования выполнены. Рассматривался, например [178], вопрос о решении интегральных уравнений Фредгольма второго рода и было показано, что решение по методу Бубнова — Галеркина совпадает с решением, получаемым при замене ядра на вырожденное при разложении его в ряд по произведениям координатных функций.  [c.154]

Подставив в (20.71) выражение (20.67) и выполнив интегрирование, получим систему линейных алгебраических уравнений относительно а - Можно показать, что уравнение (20.71) выражает в интегральной форме условие равенства нулю работы всех внешних и внутренних сил в пластине на возможных перемещениях ф (х, И. В этом смысле метод Бубнова—Галеркина, как и метод Ритца, исходит из принципа возможных перемещений Лагранжа.  [c.451]

Применение метода Бубнова—Галеркниа к интегральным уравнениям. Метод Граммеля. Рассмотрим интегральное уравнение в форме (14) гл. IX. Представление  [c.184]

В большинстве работ, посвященных теории больших прогибов, рассматриваются оболочки и пластинки постоянной толщины при упругих деформациях. В этих работах использованы вариационные методы (метод Бубнова—Галеркина, метод Ритца и др.) [76, 80, 1б4]. Для решения при нагрузках различного вида и граничных условиях необходим большой объем вычислений. Разложение функции прогиба в ряд и удержание ограниченного числа членов приводит к потере точности. Для расчета пологой оболочки переменной толщины при произвольной осесимметричной нагрузке следует применять численные методы. В настоящем параграфе алгоритм расчета строится на методе интегральных уравнений. Параметры упругости полагаются переменными, что позволяет в дальнейшем использовать это решение для рассмотрения упругопластического состояния материала диска.  [c.40]


Н. X. Арутюнян и С. М. Мхитарян [51] с использованием разложения по полиномам Чебышева и последующим применением метода Бубнова решили задачу вк Гючения для полуплоскости, к границе которой присоединено одно и два ребра. В случае двух ребер разобран отдельно случай симметричного и антисимметричного нагружения ребер. Периодическая контактная задача для полуплоскости с ребрами на границе сформулирована в работе [7]. Исходное интегральное уравнение регулярнзовано, и затем решение представлено в виде ряда Фурье. В итоге задача сведена к регулярной бесконечной системе алгебраических уравнений. В работе [8] рассмотрена задача о контакте двух полуплоскостей, соединенных полубесконечным ребром. Задача решена с учетом реакций нормального взаимодействия между ребром и пластинами и в итоге сводится к, системе двух сингулярных интегральных уравнений, которые решаются с помощью преобразования Меллина. Учет нормальных усилий взаимодействия приводит к таким же особенностям осциллящионного характера для реакций как и при вдавливании штампа с трением.  [c.126]

В разд. 7.7 дано описание способа решения полных интегральных уравнений с помощью полиномов Чебышева. Этот способ может быть применен непосредственно к решению исходных интегральных уравнений, что обычно и предпочй-тают делать. В виде полиномов Чебышева можно искать, решения уже регуляри-зованных уравнений.-Оба пути приводят к идентичным результатам. В разд. 7.7 описан прямой способ решения без предварительной регуляризации. Сначала в разделе дано определение полиномов Чебышева первого и второго рода, затем записаны условия ортогональности и известные спектральные соотношения. Затем с помощью аппарата полиномов Чебышева и метода Бубнова записана про цедура сведения полных интегральных уравнений с характеристическими ядрами вида  [c.286]

В уже упомянутых численно аналитических методах (Ритца, Бубнова Галеркина и др.), а также в интенсивно развиваемых сейчас методах граничных элементов (гранич пых интегральных уравнений) использование аналитических конструкций, в частности, интегральных представлений решения или способов сведения дифференциальной зада чи к решению системы интегральных уравнений, может дать чрезвычайно экономичные приближенные численные алгоритмы. Иногда они позволяют при решении, например.  [c.23]

В. М. Александровым, Ю. Н. Пошовкиным [24] и Н. В. Генераловой, Е. В. Коваленко [32] решены соответственно плоская и пространственная контактные задачи о вдавливании без трения полосового в плане штампа в поверхность линейно-деформируемого основания, армированную тонким упругим покрытием переменной толщины, жесткость которого соизмерима или меньше жесткости основного упругого тела. Обе задачи сведены к исследованию интегрального уравнения Фредгольма второго рода с коэффициентом при старшем члене, являющимся достаточно произвольной функцией поперечной координаты. Для его решения в первом случае использовался метод сплайн-функций в сочетании с методом ортогональных многочленов, когда толщина покрытия постоянна. Во втором варианте применялся проекционный метод Бубнова-Г алеркина с выбором в качестве координатных элементов систем ортогональных полиномов или дельтаобразных функций (вариационно-разностный метод), а также алгоритм сращиваемых асимптотических разложений, когда упомянутый выше коэффициент мал. Доказано, что неравномерность толщины покрытия существенно влияет на закон распределения контактных давлений.  [c.463]

В. В. Копасенко [195]. Автор составил интегральные уравнения относительно контактного давления н нормального напряжения в заделке. Методом Бубнова —Галеркина эти уравнения сводятся к двум системам линейных алгебраических уравнений. Численные результаты получены для штампа с плоским дном для наклонного и параболического штампа.  [c.21]

Можно принять схему работы [42], основанную на обосновании операций, совершаемых над рядами (доказав их равномерную сходимость), и на исследовании получаемых бесконечных систем на регулярность и т. д. Такой путь позволил пока полностью строго обосновать метод ортогональных многочленов применительно к случаям (достаточно многочисленным), где можно использовать первое спектральное соотношение из (4.1). Другой путь (он еще не использовался) может базироваться па том факте, что метод ортогональных многочленов по существу предетавляет некоторый специфический вариант метода Бубнова — Галеркина применительно к интегральным уравнениям первого рода. Это позволяет использовать идеи и результаты работ [151, 172].  [c.56]

Интегральная статическая модель 1ыоской одно2шдкостной фильтрации получается [42] в результате применения к исходному дифференциальному уравнению (23) метода Бубнова-Галеркина с использованием  [c.46]

Метод Бубнова-Галергшна с использованием координатных юсций 1 ( Х) позволяет перейти от дифференциального уравнения к алгебраической системе относительно коэффициентов р (Х(,) кусочно-линейной аппроксимации решения краевой задачи. Если множество эксплуатационных скважин совпадает при каждом Ь с множеством(i), то соответствующая алгебраическая система (интегральная модель) имеет вид [42, 48].  [c.48]


Основы теории упругости и пластичности (1990) -- [ c.274 ]



ПОИСК



Бубнов

Метод Бубнова

Метод интегральный

Метод интегральных уравнений

Уравнение метода сил

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте