Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы механизм действия среды

Изменение свойств а разрушение неметаллических материалов под действием окружающей среды отличается от коррозии металлов как 1Ю механизму процесса, так и по характеру взаимодействия с рабочими средами.  [c.29]

Время т разрыва при постоянной нагрузке образцов, изготовленных из одного материала, является случайной величиной (зависящей от случайных размеров и распределения элементарных дефектов в образцах материала), распределяющейся по некоторому вероятностному закону. Временная зависимость отражает внутренний механизм разрушения твердых тел, так как обусловлена тем, что само разрушение представляет собой развивающийся во времени процесс уменьшению прочности нагруженного образца способствуют побочные процессы, вызываемые агрессивным действием среды, действием поверхностно-активных веществ. Для некоторых материалов (например, силикатного стекла) наблюдается существенное отклонение зависимости 1 т = /(а) от линейной, что связано с действием атмосферной влаги — сильного поверхностно-активного вещества для этих материалов. Временная зависимость прочности силикатных стекол при испытаниях в обычных атмосферных условиях практически определяется влиянием атмосферной влаги.  [c.23]


Поведение суперсплавов в условиях усталости — тема далеко не узкая. Название "суперсплавы" охватывает материалы от сплавов с твердорастворным упрочнением ва основе викеля или кобальта до никелевых сплавов, содержащих до 65 % (по объему) ЗГ -фазы, и от монокристаллических отливок до мелкозернистых деформируемых изделий порошковой металлургии. Рассматривая усталостное поведение, необходимо учитывать его реакции на действующие механизмы ползучести и повреждающее действие среды, поскольку суперсплавы работают при высоких температурах и в агрессивных средах. Естественно, надо рассмотреть все стадии циклического деформирования, зарождения и распространения трещины, чтобы иметь данные для наиболее эффективного проектирования таких сложных механизмов, какими являются газотурбинные двигатели.  [c.336]

Механизм действия рабочей среды на керамические материалы определяется особенностями среды [10]. Рабочая среда делится  [c.14]

Таким образом, задача науки о химическом сопротивлении неметаллических материалов заключается в изучении механизмов и кинетики процессов их разрушения в контакте со средой, имеющем целью повышение их сопротивляемости действию среды и разработку методов прогнозирования их работоспособности.  [c.11]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Динамика машин является разделом общей теории механизмов и машин, в котором движение механизмов и машин изучается с учетом действующих сил и свойств материалов, из которых изготовлены звенья-упругости, внешнего и внутреннего трения и др. Важнейшими задачами динамики машин являются задачи определения функций движения звеньев машин с учетом сил и пар сил инерции звеньев, упругости их материалов, сопротивления среды движению звеньев, уравновешивания сил инерции, обеспечения устойчивости движения, регулирования хода машин. Как и в других разделах теории машин, в динамике можно выделить два класса задач — анализ и синтез механизмов и машин по динамическим критериям. Весьма существенные критерии эффективности и работоспособности машин — их энергоемкость и коэффициент полезного действия также изучаются в разделе Динамика машин .  [c.77]


Среди многочисленных факторов, определяющих долговечность, надежность машин и механизмов, ведущее место принадлежит качеству используемых конструкционных материалов. Эксплуатационные свойства материалов определяются их прочностными характеристиками, износостойкостью, коррозионной стойкостью, характером напряженного состояния и др. На эти свойства большое влияние оказывает физико-механическое состояние поверхностного слоя, в том числе остаточные напряжения. Известно, что в поверхностных слоях деталей машин могут развиваться большие технологические остаточные напряжения, по своей величине иногда превосходящие предел прочности материала, в результате чего может образовываться сетка микротрещин. Это явление может произойти как сразу после окончательной обработки, так и через некоторый промежуток времени работы вследствие совместного действия остаточных и рабочих напряжений.  [c.82]

В основу расчетов надежности при действии негрубых ошибок полезно положить теорию точности механизмов и электрических устройств. Однако переход от определения точности машин к оценке их надежности при действии негрубых ошибок все же требует больших добавочных исследований, т. е. необходимо накапливать, статистически обрабатывать и систематизировать сведения об изменении первичных ошибок с течением времени. Важно удачно выбрать и строго соблюдать определенные условия, при которых производится экспериментальное изучение изменений первичных ошибок в результате старения материалов, износов, температурных воздействий, действия сил. Тогда вероятность соответствия выходных сигналов допускам будет зависеть от времени и обеспечит надежность машины при действии негрубых ошибок. Все вредные процессы по скорости их протекания можно разделить на три группы [103] быстро протекающие (вибрации, изменения условий трения, колебания нагрузок и др.) процессы, протекающие со средней скоростью (изменение температуры машины и окружающей среды, изменение влажности и др.) медленно протекающие процессы (износ и коррозия основных деталей, усталость, ползучесть, перераспределение внутренних напряжений и др.).  [c.55]

Из сказанного видно, что механизм образования трещин и разрушения материалов при циклическом действии нагрузки весьма сложен и до конца не изучен. Природа усталостного разрушения обусловлена особенностями молекулярного и кристаллического строения вещества. Поэтому модель сплошной среды не является применяемой для ее исследования. Для создания теоретических основ усталостной прочности и разрушения материалов необходимо изучить  [c.294]

Разумеется, механизмы замедленного разрушения различны для различных материалов, нагрузок, условий эксплуатации и т. д. К числу наиболее распространенных видов замедленного разрушения относится, например, усталостное разрушение, разрушение от действия агрессивных сред, разрушение к условиях ползучести, дли-вязкоупругих полимерных материа-  [c.134]

Таким образом, на основании результатов комплексного исследования дисперсной системы, образующейся в смазочном материале в результате изнашивания, можно сделать вывод о качественном различии механизма изнашивания металлов в поверхностно-активных и инактивных средах. Различия проявляются в том, что в первом случае процессы разрушения поверхности имеют малоцикловую усталостную природу под действием ПАВ, образованных в смазочном материале в результате трибохимических реакций. Эти процессы локализуются в начальной стадии работы пары и приводят к образованию устойчивых дисперсных систем, способствующих снижению трения и износа вследствие образования из них специфических поверхностных структур.  [c.53]

К потенциально возможным неорганическим агрессивным средам относятся практически все водорастворимые окислы, кислоты, соли и щелочи. Анализ результатов многочисленных исследований механизма коррозионного действия водных растворов этих веществ на цементные материалы показывает, что неорганические агрессивные среды наиболее целесообразно классифицировать в соответствии с положениями теории о видах коррозии В. М. Москвина.  [c.125]


Группа В — органические вещества, способные вступать в химическое взаимодействие с цементным камнем. Механизм коррозионного действия и химическая активность по отношению к цементным материалам агрессивных сред этой группы могут быть весьма разнообразны. Наряду с элементарными обменными реакциями, итог которых можно легко предсказать, возможны и более сложные процессы, такие как взаимодействие на границе раздела фаз, реакции с длительным индукционным периодом, многостадийные превращения с неожиданным конеч-ным результатом. Агрессивные среды этой группы делятся на три подгруппы,  [c.126]

При эксплуатации и хранении происходит старение уплотнений. Старением в общем смысле называют изменение свойств вещества во времени. Под действием различных агентов физическое состояние и химический состав материалов изменяются, поэтому при эксплуатации и хранении изменяются все стандартные показатели материалов р, , а и др. Для прогнозирования сроков работоспособности необходимо знать механизм старения, математическое его описание и предельно допустимые значения показателей качества. Уплотнения контактируют с рабочей и окружающей средами, материалами мест установки и контртел, причем некоторые из них являются химически активными (агрессивными) или проявляют свойства катализаторов химических процессов.  [c.197]

Полиамиды. Полиамиды получаются путем варьирования различных исходных материалов, что дает возможность изменять в широких пределах свойства конечного продукта. Элементы литых изделий из полиамидов могут быть сварены или склеены эпоксидными смо.лами. При конструировании и изготовлении деталей из полиамидов необходимо учитывать их низкую теплопроводность и высокий коэффициент теплового расширения. Коэффициент расширения полиамидов в 10 раз больше, чем у стали. Рекомендуется выполнять детали тонкостенными. В зубчатых передачах необходимо предусматривать зазоры, обеспечивающие от заеданий нри повышении температуры. Изделия из полиамидов имеют высокую поверхностную твердость и прочность на разрыв и истирание, значительную прочность па изгиб и ударный изгиб. Полиамиды обладают хорошим сцеплением с металлом, а также хорошей устойчивостью к действию углеводородов, спиртов, жиров, масел и щелочей, в том числе концентрированных. Они растворяются в фенолах, минеральных кислотах, уксусной кислоте и спиртовых смесях. Полиамиды практически негорючи и весьма трудно воспламеняются. Полиамид 68 применяется ддя изготовления вкладышей подшипников скольжения, антифрикционных деталей, рабочих органов насосов и других гидромашин, а также клапанов, шестерен, винтов и т. п. Защитные покрытия из полиамидов обладают стойкостью к воздействию ароматических углеводородов, масел и других сред. Полиамиды находят применение при изготовлении деталей часовых механизмов, деталей электроаппаратов, а также для изоляции проводов и кабелей.  [c.273]

Независимо от форм проявления адсорбционного влияния среды, основные меры борьбы с преждевременным разрушением конструкций и деталей приборов и механизмов состоят либо в обеспечении условий, препятствующих контакту активного вещества с материалом, либо в создании такого напряженного состояния, при котором действие активной среды не сказывается. В соответствии с характером влияния среды, интенсивностью и локализацией напряжений, временем контакта, условиями эксплуатации и т. д. в каждом конкретном случае могут быть выработаны соответствующие методы устранения или ослабления разрушающего действия поверхностно-активных сред.  [c.242]

Неорганические ингибиторы. Это — карбонаты, фосфаты, нитриты, молибдаты, силикаты, хроматы [202, 203]. Наилучшими защитными свойствами, особенно в кислых средах, обладают смеси указанных веществ. Универсальность защитного воздействия позволяет использовать неорганические инги биторы в системах, изготовленных из разных конструкционных материалов. Механизм действия хроматов, мо-либдатов, нитритов и других ингибиторов окислительного типа обычно связывают с пассивацией поверхности за счет образования плотной, плохо растворимой оксидной пленки, толщина которой достигает 2000 нм [204]. Иные представления об ингибировании коррозии металлов в слабокислых средах в присутствии веществ окислительного типа, содержащих кислород, развиты в [205— 207]. Коррозия металла А представляется двумя сопряженными реакциями 0х+те-+рН20-> Red+nOH  [c.182]

Антирады. Известно, что в результате поглощения излучения высокой энергии в органических материалах образуются активные свободные радикалы, способные вызвать цепные реакции с образованием нежелательных продуктов. Поэтому любые методы дезактивации радикалов должны приводить к общему увеличению стойкости жидкости. Так как механизм действия многих антиоксидантов сводится также к дезактивации свободных радикалов, то окислительная и радиационная деструкции являются близкими по механизму реакциями. Практически при облучении жидкостей, содержащих стандартные антиоксиданты, последние быстро распадаются в результате взаимодействия с радикалами, образовавшимися под действием излучения, поэтому в среде, содержащей кислород, жидкость становится очень чувствительной к обычной окислительной деструкции. Мейхони и др. [21 ] было показано, что такие захватчики радикалов, как иодофенол и иодонафталин, при облучении сложных эфиров с разной степенью эффективности влияли на изменения вязкости, хотя они не обеспечивали защиту обычных антиоксидантов от разрушения при облучении дозами 1-10 эрг/г в атмосфере азота.  [c.134]

Механизм действия полимерсодержащих СОЖ таков в зоне резания под воздействием повышенной температуры и давления происходит деструкция полимера с образованием различных активных продуктов, которые взаимодействуют с обрабатываемой поверхностью и материалом инструмента. Эффективность действия полимерсодержащих СОЖ при резании зависит именно от веществ, образующихся при его деструкции, и определяется химической природой, молекулярной массой и концентрацией полимера в среде, а также от параметров режима резания.  [c.894]


Механизм действия поверхностно-лктивных сред на полимерные материалы рассматривается в основном с тех же позиций, как и для металлов, т. е. с точки зрения эффекта Ребиндера и энергетической концепции Гриффитса [53, с. 7 15].  [c.133]

Характерную роль вязкости можно объяснить, по-видимому, различным механизмом разрушения полимерных материалов в поверхностно-активных средах и растворителях, а также относительной ролью поверхностной диффузии среды в микротреш,ины образца при достаточно высоких а и ее влиянием на кинетику процесса разрушения. Действительно, влияние вязкости должно сказываться в первую очередь в том случае, если скорость разрушения определяется скоростью поверхностных или объемных процессов диффузии среды к локальным местам разрушения. Проникание сильных растворителей в перенапряженные пред-разрывные участки, как отмечалось выше, приводит к резкому ослаблению химических связей и к мгновенному разрушению. С возрастанием вязкости скорость проникания среды уменьшается, долговечность полимерного образца увеличивается. При действии поверхностно-активных сред, не обладающих pa iBO-ряющим действием для ПАША, сохраняется термофлуктуацион-ный механизм разрушения, ускоряемый поверхностно-активным действием среды. При этом скорость поверхностной диффузии среды является определяющей, очевидно, только в области достаточно высоких а и малых т. В области малых а и больших т среда успевает проникнуть к вершинам микротрещин. Подробно этот вопрос, с количественнбй интерпретацией кинетики процессов разрушения в средах, рассматривается в разделе IV.6.  [c.139]

Наряду с изложенными в данном разделе нашими взглядами по оценке механизма разрушения и долговечности напряженных образцов полимерных материалов в жидких средах, естественно, существуют и другие. Интерес представляют работы Тынного, Сошко и др. [53, 75], в основе которых лежит энергетическая теория. Авторы предполагают, что под действием некоторых поверхностно-активных веществ трещины в стеклообразном полимере начинают медленно развиваться при некотором значении эффективной энергии разрушения, которая на два порядка ниже (для ПММА), чем в случае мгновенного разрушения полимера на воздухе. Скорость роста трещины v является функцией энергии разрушения и температуры.  [c.161]

Приведенная на рис. 4 схема включает также процессы электрохимической коррозии, водородного износа /см. разделы 1,2/. Эта схема отражает адсорбционно-коррозионно-усталостную природу разрушения и износа металла в смазочной среде и является феноменологическим описанием механизма этого разрушения и износа с учетом факторов, определяемых составом смазочной среды. В зависимости от условий эксплуатации, характера нагрузки, материала и конструкции конкретного узла машины роль указанных на схеме факторов может быть различной. Вместе с тем значимость каждого из указанных факторов представляется достаточной для включения в общую схему й рассмотрения применительно к конкретному случаю разработки, анализа механизма действия и применения смазочных материалов, эффективных в условиях коррозионно-ус-талостного износа.  [c.35]

Наиболее полный перечень работ, касающихся изменения свойств материалов под действием радиоактивного облучения, с описанием некоторых физических механизмов этого явления содержится в обзорах Ф. Бови (1959) и В. С. Ленского (1900). В обзоре В. С. Ленского предложено обобщение теории малых упруго-пластических деформаций на случай неоднородности среды, обусловленной неравномерностью радиационного облучения.  [c.465]

Процессы капиллярной конденсации и капиллярного поднятия, ведущие к появлению в структуре армированного пластика новой фазы, различаются как по интенсивности, так и по абсолютной величине равновесной сорбции, достигаемой материалом. При контакте с жидкой фазой происходит заполнение не только субмикроскопических, но и микроскопических дефектов. Наряду с капиллярными явлениями в стеклопластиках происходит и медленное диффузионное проникновение низкомолекулярного вещества. Однако в отличие от неармированных полимеров этот процесс идет не только с поверхности контакта, но и через стенки капилляров по межфазным дефектам полимерного связующего. Благодаря этому сорбционное равновесие в армированных пластиках устанавливается за менее продолжительное время. Если максимальное водопоглощение химически стойких полиэфирных смол достигается за срок более 3 лет [101], то в случае стеклопластиков равновесная сорбция устанавливается в течение 1,5-2 лет, а иногда и значительно быстрее-в течение 2-3 месяцев. Конкретный механизм влияния среды на служебные свойства (адсорбционное понижение прочности, пластифицирующее действие, деструктирующее действие и т.п.) зависит от природы и количества сорбированной среды. Таким образом, сорбционная активность в значительной степени определяет и химическое сопротивление стеклопластиков и изделий на их основе.  [c.109]

Использование технологий модификации первого поколения [165, 166 , основанных на однократном или многократном однотипном внешнем воздействии потоками тепла, массы, ионов и т.д., не всегда обеспечивает требуемые показатели износостойкости материалов при высоких температурах, контактных давлениях и действии агрессивных сред. Поэтому расширение области применения и эффективности методов модификации металлов и сплавов для их использования в экстремальных условиях эксплуатации связано с созданием комбинированных и комплексных способов упрочнения, сочетающих достоинства различных технологических приемов. Существует несколько базовых способов унрочнения, эффективность которых в сочетании с другими методами подтверждена производственной практикой [165, 166]. К таким методам относятся ионно-плазменное напыление, электроэрозионное упрочнение, поверхностное пластическое деформирование, а также термическая обработка. Модификация структуры и свойств материалов при этом происходит за счет сочетания различных механизмов, отличающихся физико-химической природой. На этой основе разрабатываются H(3BE)ie варианты технологий второго поколения, вклю-чаюЕцие двойные, совмещенные и комбинированные нроцессы [166-169], в которых применяются потоки ионов, плазмы и лазерного излучения. К данному направлению относятся обработка нанесенных  [c.261]

Механические свойства композиционных материалов и их составных частей меняются под влиянием окружающей среды и химического старения, особенно при изменении температуры н под действием воды (водяных паров) на полимерные композиты (см., например, Фрид [33], Стил [111], Цай [118]). Такие эффекты часто необратимы и приводят к изменению свойств материала со временем. Мы интересуемся здесь только способом, которым можно учесть эти влияния в определяющих уравнениях вязко-упругого материала. Детальное обсуждение физического и химического механизмов, приводящих к подобным изменениям, а также математическое их описание остаются вне рамок настоящей главы.  [c.129]

На АЭС широко применяется регулирующая арматура с ручным местным и дистанционным управлением или местным электрическим исполнительным механизмом. Регулирующая арматура с пневматическими исполнительными механизмами на АЭС применяется редко. Наиболее широкое применение на АЭС находят регулирующие сальниковые и сильфонные вентили с ручным дистанционным управлением, регулирующие клапаны с местным и дистанционным электрическим исполнительным механизмом (ЭИМ), дроссельные вентили и клапаны, запорно-дроссельные вентили и клапаны быстродействующие редукционные установки (БРУ), быстродействующие редукционно-охла-дительные установки (БРОУ). Часто применяются регуляторы давления и уровня. Регулирующая арматура подразделяется по диаметру прохода, давлению и температуре, материалу корпусных деталей, способу присоединения к трубопроводу, пропускной способности и пропускной гидравлической характеристике. Регулирующие вентили и клапаны являются управляемой арматурой, регуляторы давления и уровня действуют автоматически (автономно) с использованием энергии рабочей среды.  [c.117]


Изучение структурных и энергетических закономерностей пластической деформации в приповерхностных слоях материалов в сравнении с их внутренними объемными слоями имеет важное значение для развития теории и практики процессов трения, износа и схватывания. При этом следует отметить, что. поверхностные слои кристаллических материалов имеют, как правило, свои специфические закономерности пластической деформации. Так, например, в работе [11 при нагружении монокристаллов кремния через пластичную деформируемую среду силами контактного трения было найдено, что в тонких приповерхностных слоях на глубине от сотых и десятых долей микрона до нескольких микрон величины критического напряжения сдвига и энергии активации движения дислокаций значительно меньше, чем аналогичные характеристики в объеме кристалла. Было также показано [2], что при одинаковом уровне внешне приложенных напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил изображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. Поэтому поверхностные источники генерируют значительно большее количество дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичной конфигурации и геометрии при одинаковом уровне внешних напряжений. Высказывалось также предположение, что облегченные условия пластического течения в приповерхностных слоях обусловлены не только большим количеством легкодействующих гомогенных и различного рода гетерогенных источников сдвига [3], но и различной скоростью движения дислокаций у поверхности и внутри кристалла [2]. Аномальное пластическое течение поверхностных слоев материала на начальной стадии деформации может быть обусловлено действием и ряда других факто-зов, например а) действием дислокационных сил изображения 4, 5] б) различием в проявлении механизмов диссипации энергии на дислокациях, движущихся в объеме кристалла и у его поверхности причем в общем случае это различи е, по-видимому, может проявляться на всех семи фононных ветвях диссипации энергии (эффект фононного ветра, термоупругая диссипация, фонон-ная вязкость, радиационное трение и т. д.) [6], а также на электронной [71 ветви рассеяния вводимой в кристалл энергии в) особенностями атомно-электронной структуры поверхностных слоев и их отличием от объема кристалла, которые могут проявляться во влиянии поверхностного пространственного заряда и дебаевского радиуса экранирования на вели-  [c.39]

ПОЛЗУЧЕСТИ ТЕОРИЯ математическая — раздел механики сплошных сред, в к-ром изучают процессы медленного деформирования (течения) твердых тел под действием пост, напряжения (или нагрузки). В силу различия физ. механизмов, приводящих к возникновению временных эффектов, единой П. т. не существует. Наиб, развитие получили варианты П. т., описывающие поведение наиб, распространённых конст-рукц. материалов металлов, пластмасс, композитов, грунтов, бетона. Оса. задача П. т.— формулировка таких матем, зависимостей между деформацией ползучести (или её скоростью) и параметрами, характеризующими состояние материала (механич. напряжения, темп-ра,повреждённостьи др.), к-рые бы достаточно полно отражали осн. наблюдаемые в экспериментах свойства. К П. т. непосредственно примыкают теории т. н. длит, прочности, описывающие разрушение материалов при выдержке в условиях постоянной или слабо меняющейся нагрузки.  [c.10]

Кавитация наблюдается не только в воде и растворах электролитов, но и в расплавах легкоплавких металлов, причем механизм и кинетика разрушения в этом случае существенно меняются, что связано с физикo-xИiMичe кими свойствами среды и высокой температурой. При смыкании кавитационных пузырьков в расплавах выделяется в несколько раз больше энергии, чем в воде, соответственно возрастает разрушающее действие кавитационной зоны. Так, кавитационное разрушение в ртути происходит в 10—20 раз быстрее, чем в воде. В то же время высокие температуры расплавов вызывают разупрочнение конструкционных материалов и резко усиливают процессы коррозии (растворение конструкционных материалов в расплавах, взаимодействие с примесями и др.).  [c.255]

Реализация эффекта Ребиндера. Почти все смазочные материалы содержат поверхностно-активные вещества, что предопределяет возможность пластификации поверхностных слоев материала деталей в результате эффекта Ребиндера и снижения сил трения между ними. При обычном трении окисные пленки препятствуют проникновению среды (и вместе с ней ПАВ) к металлу, чем снижается эффект Ребиндера в результате пластические деформации участков контакта охватывают более глубокие слои (рис. 18.11, а). При ИП окисные пленки отсутствуют, и действие эффекта Ребиндера реализуется в полной мере, в результате деформируется лишь сервовитная пленка подповерхностные слои металла деформации не претерпевают (рис. 18.11,6). Поскольку молекулы поверхностноактивных веществ находятся в порах сервовитной пленки, не исключается скольжение и внутри пленки по принципу диффузионно-вакансй иного механизма, но с малой затратой энергии. Все это значительно снижает трение и изнашивание.  [c.284]

Выдвинуто много гипотез, объясняющих механизм разрушения металла на микроучастках, где происходит замыкание кавитационных каверн. Так, в соответствии с представлением о термоэлектрических эффектах [15] полагают, что электрические токи могут возникать под действием высоколокализованных напряжений сжатия, когда появляются гидродинамические силы, действующие на микроскопические участки твердого тела при сокращении кавитационной полости. Особенно распространена гипотеза о значительном влиянии электрохимической коррозии на процесс кавитационного разрушения. Однако имеется много экспериментальных данных [34, 50], свидетельствующих о наличии кавитационной эрозии и в химически нейтральных средах, а также на материалах, не подвергающихся коррозии (стекло, пластмассы и т. п.).  [c.25]

При высоком давлении среды (р < 20 МПа) и большом контактном давлении (рк > 1 МПа) торцовые уплотнения работают в условиях граничной С1к1азки. В этом случае герметичность обеспечивают за счет большого коэффициента нагруженности Ь > 0,7), а ресурс — за счет лучших антифрикционных материалов. Относительно механизма уплотнительного действия существуют противоречивые представления. При таком режиме между поверхностями уплотнения имеется зазор, примерно равный йп, и большое число зон контакта. Полагая, что по микроканалам происходит утечка под действием перепада давлений Ар, расчет можно выполнять по формуле (1.22). Майер однако утверждает, что вязкость ц при граничной смазке не влияет на утечки и давление в зазоре постоянно (рД т. е. расчет утечек следует выполнять по эмпирической формуле [49]  [c.42]

В коетактных УН механизм герметизации определяется характером контакта уплотняемых поверхностей соединения и уплотнителя, поэтому важное значение имеет шероховатость поверхностей и структура стыка при их сближении под действием сил, создающих контактное давление рк. Характер контакта жестких поверхностей (металл-металл), эластомеров, пластмасс или композиционных материалов с твердой поверхностью различен. Существует два метода теоретического исследования герметичности стыка между двумя реальными поверхностями, каждая из которых имеет сложную геометрическую форму. Первый метод основан на модели течения среды по системе микрощелей с параметрами 5(, Bf, Ij (5 Bi > I), заменяемой эквивалентной щелью с функцией формы F и эквивалентным зазором  [c.107]

Предполагалось, что на поверхности каверн в процессе их образования возникают большие электрические потенциалы, которые и являются причиной свечения. Аналогичным образом Петраччи [42] предполагал, что кавитационное разрушение обусловлено электрохимической коррозией, вызываемой электрическими токами в разрушаемом материале, и в качестве подтверждения приводил факт, что кавитационное разрушение в очень агрессивной среде можно значительно ослабить с помощью катодной защиты . Он считал, что эти токи возникают вследствие механических напряжений в материале, вызываемых гидродинамическими ударами. Согласно последним исследованиям Плессета [46], такой механизм, если он вообще существует, вероятно, не играет большой роли и что действие катодной защиты, с одной стороны, подавляет коррозию, а с другой — снижает интенсивность схлопывания пузырьков благодаря демпфирующему действию свободного водорода, выделяемого на защищенной металлической поверхности.  [c.419]

Наиболее распространенный метод переработки термореактивных и термопластических материалов — прессование, при котором используют основное свойство пластмасс — пластичность, т. е. способность под действием тепла размягчаться и под давлением заполнять форму. Из термореактивных пресс-материалов в машиностроении широко применяют текстолитовую крошку для изготовления деталей, которые должны обладать высокими механическими и антифрикционными свойствами, например вкладыши подшипников. Подшипники из текстолита, работающие в прокатных станах, смазываются водой, хорошо переносят повышенную температуру и более износостойки, чем подшипники из бронзы. Зубчатые колеса из текстолита при работе издают меньше шума, чем металлические, обладают стойкостью к действию агрессивных сред и меньшей массой. Асботекстолит изготовляют на основе асбестовой ткани, асбобумолит — на основе асбестовой бумаги и искусственных смол. Их применяют для различных прокладок, работающих при повышенных температурах, и для тормозных устройств и деталей механизмов сцепления. Стеклотекстолит получают на основе стеклоткани и искусственных смол. Он обладает высокими механическими и электроизолирующими свойствами, высокой теплостойкостью и малой водопоглощаемостью. Применяют его в качестве электроизоляционного и конструкционного материала.  [c.285]



Смотреть страницы где упоминается термин Материалы механизм действия среды : [c.259]    [c.49]    [c.52]    [c.71]    [c.129]    [c.7]    [c.54]    [c.50]    [c.241]    [c.172]    [c.243]    [c.79]    [c.48]   
Коррозионная стойкость материалов (1975) -- [ c.67 ]



ПОИСК



Среда (см. материал)



© 2025 Mash-xxl.info Реклама на сайте