Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Графические металлов

На рис. 33 показаны некоторые условные графические обозначения материалов в разрезах и сечениях для деталей, изготовленных из металла (рис. 33, а), неметаллических — пластмассовых и других материалов (рис. 33, б) и дерева (рис. 33, б — в поперечном сечении, рис. 33, г — в продольном сечении).  [c.48]

На рис. 34 показаны некоторые условные графические обозначения материалов в разрезах и сечениях для деталей, изготовленных из металла (рис. 34, а), неметаллических—пластмассовых и других материалов (рис. 34, б), стекла (рис. 34, в), сетки (рис. 34, г). Подробнее см. ГОСТ 2.306-68 (СТ СЭВ 860-78).  [c.42]


На чертежах деталей применяют два вида обозначений материала буквенно-цифровое, характеризующее его марку, которое записывают в i рафу Материал основной надписи, п графическое, являющееся общим для групп однородных материалов (металлы, неметаллические материалы, бетоны и  [c.125]

Если в машиностроении большинство изделий выполняется из металла, то в строительстве объекты, как правило,состоят из частей, выполненных из различных материалов, как естественных, так и искусственных. На фасадах условные изображения строительных материалов показывают отдельными участками у контура. Если на чертеже невозможно выполнить условные графические обозначения материалов по стандарту, применяют обычную штриховку или сплошную заливку тушью.  [c.388]

Для графического расчета скорости и характеристик электрохимического коррозионного процесса используют поляризационные кривые Va = = / (t a) — кривую анодной поляризации анодных участков корродирующего металла и = / ( к) — кривую катодной поляризации катодных участков корродирующего металла (так называемые идеальные поляризационные кривые). Для расчета опытные данные этих кривых для известных суммарных площадей анодных и катодных участков корродирующего металла пересчитывают в зависимости = f ( ) и = / (/). Такой пересчет необходим потому, что у корродирующего металла суммарные площади анодных и катодных участков (в общих случаях) не равны, и поэтому плотности тока на анодных и катодных участках также не равны, в то время как сила коррозионного тока общая и для анодного, и для катодного процесса  [c.271]

Для графического расчета системы, состоящей из нескольких металлов (или металла из нескольких структурных составляющих), необходимо знать относительные величины площадей каждого металла и соотношение поверхностей всех анодных и катодных составляющих каждого металла (электродов) и располагать идеальными анодными и катодными поляризационными кривыми всех электродов (т. е. всех анодных и катодных составляющих металлов) в условиях, близких к условиям коррозии многоэлектродной системы, называемыми, по В. П. Батракову, дифференциальными — парциальными кривыми.  [c.287]

Графическое решение короткозамкнутой многоэлектродной системы состоит в следующем. Имеющиеся для каждой анодной и катодной составляющих (электродов) всех металлов кривые плотность тока—потенциал [K = /(i)l пересчитывают в соответствии с величиной площади каждой составляющей системы и наносят на общую поляризационную коррозионную диаграмму в координатах сила тока —потенциал 1У = / (/)].  [c.287]


Часты случаи, когда в контакте находятся несколько корродирующих металлов (полиметаллические конструкции), которые образуют сложный многоэлектродный элемент (см., например, рис. 188). Графическое решение многоэлектродной системы (гл. 15, пп. 3, 4 и 5) позволяет определить полярность каждого металла и коррозионный эффект полиметаллического контакта (увеличение или уменьшение коррозии) для каждого из сопряженных металлов.  [c.358]

Скорость коррозии металла, выраженная количественно с помощью одного из приведенных выше количественных показателей, является средней скоростью за время т. Истинная скорость коррозии металла в момент времени т может быть определена графическим дифференцированием по тангенсу угла наклона касательной к кривой коррозия—время (рис. 313).  [c.429]

На всех разрезах и сечениях сборочных чертежей изделий, для одних и тех же деталей, при нанесении графических обозначений материалов для металлов и твердых сплавов, штриховка должна быть направлена в одну и ту же сторону.  [c.273]

Металлы и твердые сплавы, а также общее графическое обозначение материалов в сечениях независимо от вида материалов изображают наклонными параллельными прямыми линиями. Эти линии называют линиями штриховки. Линии штриховки наносят на чертеже сплошными тонкими линиями 5/3...5/2 с наклоном 45° к линиям рамки чертежа (черт. 139, а), или к линии контура изображения (черт. 139,6) или к его оси (черт. 139, в).  [c.53]

Штриховка изображений. Графические изображения материалов и правила их нанесения на чертежах установлены в ГОСТ 2.306—68. На рисунке 15.14 на примерах характерных соединений электронных приборов и узлов оборудования показаны графические обозначения металлов 7, стрелка 2, керамики 3.  [c.310]

Примечания 1. Допускается применять и другие обозначения, поясняя их на чертеже. 2. Графическое обозначение металлов и твердых еплавов применяют в сечениях как общее обозначение материала независимо от вида материалов. 3. Композиционные материалы, содержащие металлы и неметаллические материалы, обозначают как металлы. 4. Графическое обозначение древесины следует применять, когда нет необходимости обозначать направление волокон.  [c.461]

Оперативная оценка размеров областей водородных расслоений металла в любом сечении, нормальном срединной поверхности конструкции, может быть выполнена графически. При проведении диагностики эксплуатировавшегося оборудования, в металле которого методами ультразвукового контроля (УЗК) обнаружены участки с водородными расслоениями, необходимо выявить наиболее опасные из них. На основании результатов УЗК или других методов неразрушающего контроля устанавливают границы водородных расслоений и их местоположение по высоте. Оценивают степень поражения конструкции, определяют области изолированных и взаимодействующих водородных расслоений.  [c.129]

Таблица 25.28. Коэффициенты ионно-электронной эмиссии металлов 7, электрон/ион [35] (данные получены графической интерполяцией между экспериментально измеренными значениями) Таблица 25.28. Коэффициенты ионно-<a href="/info/7534">электронной эмиссии</a> <a href="/info/1601">металлов</a> 7, электрон/ион [35] (данные получены графической интерполяцией между экспериментально измеренными значениями)
Эта зависимость удобна для графического нахождения скорости газовой коррозии металла при любой температуре. Она же может быть использована и для определения постоянных А и Q уравнения  [c.29]

В связи с неравномерным характером коррозии сварного соединения показатель изменения массы (весовой показатель коррозии) не характеризует его коррозионную стойкость). Удобным является метод измерения коррозионного разрушения, который позволяет определить зоны максимальной коррозии и истинную глубину разрушения металла. Графическое изображение профиля образца после коррозионных испытаний называется профилограммой.  [c.45]


Высокотемпературной коррозии металлов посвящен ряд работ [10, 62, 63, 71, 105], в большинстве из которых рассматривается качественная сторона процесса и отсутствуют инженерные методы расчета. Исключение составляет монография В. И. Никитина, где дается графический метод расчета интенсивности коррозии металла [105]. Вместе с тем, актуальность решения указанных вопросов в настоящее время резко возрастает в связи с более широким использованием на тепловых электростанциях низкокачественных топлив со сложным составом минеральной части. Рассмотрению высокотемпературной коррозии и коррозионно-эрозионного износа металла во всей совокупности проблем и посвящена предлагаемая вниманию читателей настоящая монография.  [c.4]

Разработанные к настоящему времени методы расчета интенсивности коррозии металла, его предельной температуры, долговечности работы и других количественных показателей основываются на обобщенных математических формулах, аналитически описывающих с количественной стороны высокотемпературную коррозию. Такие формулы являются также основой графических методов определения количественных показателей коррозии.  [c.89]

Кроме рассмотренного аналитического метода расчета характеристик коррозии металла существуют также графические методы.  [c.98]

Рис. 3.5. Схема графического определения предельной температуры металла трубы с учетом коррозии как с внутренней, так и с наружной стороны Рис. 3.5. Схема графического <a href="/info/98192">определения предельной</a> <a href="/info/357444">температуры металла</a> трубы с учетом коррозии как с <a href="/info/7623">внутренней</a>, так и с наружной стороны
Рис. 5.1. Графическое изображение зависимости глубины износа металла от силы очистки Рис. 5.1. <a href="/info/335264">Графическое изображение</a> зависимости глубины <a href="/info/304104">износа металла</a> от силы очистки
Коррозионно-эрозионный износ металла можно графически изобразить кривой, приведенной на рис. 5.1. На вертикальную ось нанесена глубина износа As, а на горизонтальную ось — обобщенная сила очистки Р, под воздействием которой с труб могут отделяться золовые отложения и произойти разрушения оксидной пленки. При паровой или воздушной обдувке силу Р, например, можно считать пропорциональной удельному силовому импульсу, при дробеочистке— энергии дроби, при водяной обмывке —возникающим в оксидной пленке термическим напряжениям либо градиенту температур, при виброочистке — импульсу инерционных сил и т. д. Можно также представить схему, когда на поверхность одновременно влияют силы различной природы. Представленный на рисунке график построен для известного момента времени  [c.189]

Таким образом, учитывая, что параметр Кз не зависит от размера зерна, при графическом нахождении эквивалентной деформации (рис. 4.15) кривая 3 повторного нагружения должна быть нанесена так, чтобы она проходила в начальный момент выше кривой 2 деформации рекристаллизованного металла на величину  [c.179]

Эквивалентную деформацию для каждого прохода (на рис. 4.19, а-они обозначены соответствующими номерами) определяли графически-[371] наложением кривой нагружения этого прохода на кривую S — е (на рис. 4.19, а кривая р ), рассчитанную по уравнению (4.10) для рекристаллизованного металла.  [c.185]

Это уравнение, связывающее массу капли с конечной площадью растекания в неизотермических условиях, решается графически относительно площади растекания или относительно массы жидкого металла. Сопоставление экспериментальных данных с расчетными (рис. 4) показывает достаточно хорошее их совпадение.  [c.19]

При коррозии металлов с водородной деполяризацией скорости частных реакций водорода и растворения металла лимитируются чисто кинетическими ограничениями, в подавляющем большинстве случаев — замедленностью переноса заряда, т. е. электрохимическим перенапряжением. Наблюдающиеся при этом закономерности можно представить графически в виде так называемых коррозионных диаграмм. На рис. 1 в координатах ток — потенциал изображены катодная (выделение водорода) и анодная (ионизация металла) поляризационные кривые с чисто кинетическими ограничениями. Для того чтобы диаграмма отвечала коррозионному процессу, на ней, согласно формуле (6), на оси абсцисс справа ( в области отрицательных значений потенциалов) располагается равновесный потен-  [c.13]

Зависимость Igg — Р, представленная графически, является параметрической диаграммой. Для построения параметрической зависимости g g, h), при разных значениях Тит предварительно рассчитывается Q. Наклон линейной зависимости Ig g — Р определяется показателем степени п уравнения (51). Экспериментальные значения g, полученные при разном времени выдержки или разной температуре испытания ложатся на одну прямую при условии, что механизм процесса не изменяется Из уравнения, (55) следует, что температура и время связаны между собой, и при неизменности механизма окисления при разных температурах можно получить одинаковые значения параметра. Например, при температуре металл окисляется в течение времени в одном опыте, а при более высокой температуре Т , для того чтобы получить такое же значение параметра, как и в первом опыте, нужно окислять металл меньшее время чТа  [c.308]


Параметрические методы прогнозирования разработаны еще слабо. Ряд проблем в этой области связан с графическим представлением данных. Иногда параметрические зависимости удается представить в виде гистограмм или диаграмм. Так, в работе [122] приведена диаграмма прогнозирования максимальной рабочей температуры плавления тугоплавких металлов, из которых изготавливаются камеры сгорания твердотопливных ракет.  [c.66]

Что касается правил нанесения графических обозначений материалов в сечениях, то они в основном остались без изменения. К со- жалению, не удалось распространить на машиностроительные чертежи правило не применять обозначений материалов, если нет необходимости в графическом их выделении, например, при их единообразии. Такое правило широко применяется в строительных чертежах. Это предложение было отвергнуто при обсуждении проекта стандарта, несмотря на то что в рекомендации по стандартизации СЭВ P 644—66 сказано, что, когда не требуется выявлять различие материалов или когда все изделие выполнено из одного материала, в разрезах и сечениях все материалы следует штриховать как металлы.  [c.25]

Несколько изменена и структура осиовйого обозначения. Высоту катета наплавленного металла в швах угловых и тавровых соединений, а также величину диаметра точки точечного шва и ширину роликовых швов, выполняемых контактгсои сваркой, указывают перед условным графическим знаком шва. После графического знака во всех случаях указывают толщину и другие параметры шва сварного соединения (длина шва, длина npoBapnBaeNroro участка, шаг и количество рядов). Для более наглядного выделения швов, выполняемых по периметру,  [c.100]

Зависимости AG = / (Т) или (ро равн = f (Т) для окислов металлов могут быть рассчитаны по одной известной величине AGr или (роЛравн с помощью приближенного графического метода, предложенного нами, в принципе сходного с разработанными М. X. Карапетьянцом методами сравнительного расчета физикохимических свойств и основанного на пересечении прямых Ig (РОг)равн = f (1/ ) для твердых неорганических окислов в одной точке. Для подавляющего большинства окислов такой точкой является 1/Г = О и Ig (ро,)равн = 10 (рис. 5).  [c.23]

Приближенный графический расчет температурной зависимости давления диссоциации (рг рзан соединения металла или AGt его образования по одной известной величине давления диссоциа-  [c.24]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

В результате графического суммирования сил токов всех трех катодных процессов получается суммарная катодная кривая (К<)обр — соответствующая случаю коррозии всех трех металлов в контакте друг с другом. Таким же графическим суммированием сил токов анодных процессов получается суммарная анодная кривая (1 а5)обр — Для этого к анодной кривой первого металла (V ajoep — a, начиная со значения потенциала (l/aJo6p следует графически прибавить анодный ток второго металла. Построение суммарной анодной кривой (Vai)o6p — ас следует прекратить после ее пересечения с суммарной катодной кривой (VJo6p — Vk -  [c.288]

Ошу коррозионного тока и другие характеристики можно определить графическим путем. Для графического расчета используют полученнне опытннм путем поляризационные кривив Vд i(i( - к[)ивую анодной поляризации анодных участков корродирующего металла и - кривую  [c.35]

В дальнейшем метод Г.А. Николаева получил развитие в работах Н. О. Окерблома. Было предложено рассматривать не одно сечение, а ряд сечений на стадии нагрева и охлаждения. При этом для каждого сечения выполняют графические построения, аналогичные рассмотренным выше, с последовательным учетом накапливаемых пластических деформаций. Это позволяет более точно определять напряжения в процессе сварки, а остаточные напряжения в шве и околошовной зоне также оказываются равными пределу текучести металла. Однако осуществлять вручную графорасчетные построения для ряда сечений трудно, и поэтому метод Н. О. Окерблома нашел практическое применение лишь в последние годы при численной реализации его на ЭВМ.  [c.416]

К числу характерных особенностей роста трещин при коррозионном растрескивании следует отнести неоднозначность зависимостп v K) для ряда систем металл — среда, обусловленную начальными условиями нагружения [254]. Как следует нз рис. 48.4, для системы сталь 50Х — изобутиловый спирт расположенпе кинетической диаграммы обусловлено значением коэффициента пнтенсивности напряжений Кц (при котором начинается до-критический рост трещин) при этом с повышением выход на стабилизированный участок достигается при более высоких значениях скоростей. Как показали фракто-графические исследования, такая неоднозначность кинетических диаграмм во много.м обусловлена ветвлением трещин, интенсив-иость которого зависит от начальных условий нагружения.  [c.366]

Графическая интерпретация полученного решения для оценки статической прочности однородных (из металла М , т. е. при Kg = 1) и механически неоднородных (К > 1) сварных соединений со смещенными кромками представлена в виде номограммы на рис. 4.3. Первый квадрант номограммы используется для нахождения прочности однородного соединения. Здесь при фиксированных значениях параметра ае в зависимости от относительного смещения кромок X построена функция ф = ar tg— (на рисунке она прове-  [c.120]

В работе /31 / приведены математические выражения для компонент, входящих в формулу (5.6), что дало основание не показывать их в настоящем разделе в силу громоздкости. Однако графическая реализация результатов вычислений в виде зависимости параметра от нагруженности сварного соединения а р, его геометрии и местоположения поры приведена на рис. 5.2. Последние два фактора характеризуются поправочной функцией F, которая находится путем сопоставления упругого решения для тел бесконечных и конечных размеров и для решений в упругой стадии работы при различных положениях поры в швах. В дальнейшем будут приведены расчетые формулы для определения F для единичных дефектов и цепочки пор. При локальном пластическом деформировании металла в окрестности поры параметр уменьшается с увеличением поправочной функции F. В условиях общей текучести (рис. 5.2, б) влияние поправочной функции F на критические напряжения а р незначительно.  [c.130]

Карты Эшби составлены для материалов с разной кристаллографической структурой ГЦК-, ОЦК- и ГПУ-металлов, ионных и ковалентных кристаллов и построены в основном на результатах фракто-графического анализа. В некоторых случаях выводы делались по характерным измененням пластичности или времени до разрушения.  [c.211]


Верхняя граница этого интервала при непосредственном соприкоснове- НИИ (контакте) металлов, расположеннь(х в коррозионной среде, может быть определена с использованием поляризационных кривых при этом наибольшая возможная плотность тока на поверхности какого-либо одного из этих металлов определяется графически (рис. 1.5) как абсцисса точки пересечения его поляризационной кривой с горизонтальной прямой, отсекающей на оси ординат отрезок, равный по величине стационарному потенциалу второго металла.  [c.12]


Смотреть страницы где упоминается термин Графические металлов : [c.97]    [c.124]    [c.448]    [c.212]    [c.147]    [c.334]    [c.7]    [c.178]   
Машиностроительное черчение (1985) -- [ c.129 ]



ПОИСК



Графические обозначения материалов металлов

Графический



© 2025 Mash-xxl.info Реклама на сайте