Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроструктуры — Характеристики

Выберите наиболее рациональную марку стали для изготовления автомобильных рессор средней прочности. Расшифруйте состав выбранной стали, назначьте и обоснуйте режим термической обработки, обеспечивающей наилучшие эксплуатационные свойства рессор. Охарактеризуйте микроструктуру, приведите характеристики механических свойств после термической обработки,  [c.151]


Зарисовать микроструктуру, дать характеристику наблюдаемым структурным составляющим и указать на основании диаграммы железо — углерод, в чем заключается различие в структуре обоих образцов.  [c.297]

При разработке адекватной физико-математической модели, объясняющей феномен Ранка, одним из основных факторов следует считать взаимосвязь эффективности процесса энергоразделения с характеристиками микроструктуры потока [15, 37, 38, 95,  [c.170]

Турбулентные характеристики потока дают представление о микроструктуре турбулентных течений в различных условиях. Они необходимы для расчета закономерностей течения, тепло- и массо-обмена турбулентных потоков, разработки более совершенных методов их расчета.  [c.255]

В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существуюш,их микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  [c.181]

Правило фаз. Диаграммы состояний позволяют систематизировать сведения о сплавах, поскольку сплавы можно классифицировать по группам и соответствии с их микроструктурой. Для проверки точности разрабатываемых диаграмм состояния и характеристик сплавов применяют правило фаз Гиббса число степеней свободы  [c.94]

Назначение микроструктурного анализа композиции покрытие — основной металл заключается в установлении связи между условиями напыления, химическим составом исходных материалов, особенностями микроструктуры и эксплуатационными характеристиками.  [c.154]

Исследование материалов с покрытиями с помощью растровых микроскопов позволяет проводить морфологический анализ изломов деталей с покрытиями оценивать структурную неоднородность в поперечных и продольных сечениях покрытий выявлять микроструктуру переходной зоны покрытие — основной металл определять количественные характеристики пористости покрытия изу-  [c.179]


Интересные особенности влияния структуры на усталостные характеристики титановых сплавов выявлены авторами работы [132, с. 42]. Для сплавов ВТЗ-1 и ВТ8 в различном структурном состоянии проанализирован разброс значений долговечности, при этом установлено, что грубая игольчатая микроструктура способствует большему разбросу данных. Это значит, что сплав с такой структурой имеет более низкий предел выносливости по средним данным и по минимальной вероятности разрушения.  [c.154]

Геометрические характеристики движущейся трещины определяются масштабными уровнями процессов пластической деформации и разрушения и могут определяться размерами элементов структуры, суб- или микроструктуры.  [c.240]

Во многих случаях (например, когда нужно учесть микроструктуру материала или установить соотношения между его вязкоуПруги.ми характеристиками см. разд. И, Ж) желательно  [c.130]

Принципы соответствия справедливы для композитов независимо от того, учитывается или нет микроструктура материала. Если длины волн, определяющие динамический отклик, много больше характерного размера микроструктуры, то, как было указано выше, можно использовать эффективные модули и податливости композитов при этом плотность р относится к объему, много большему объема элемента микроструктуры, т. е. р представляет собой эффективную плотность материала. Большая часть имеющихся вязкоупругих (упругих) решений для ограниченного тела основывается на теории эффективных характеристик композитов. С другой стороны, большинство существующих результатов, найденных с учетом микроструктуры, относится к стационарным колебаниям в неограниченной среде. Как отмечено выше, в обоих случаях справедливы динамические принципы соответствия, поэтому здесь будут рассмотрены оба решения. В том случае, когда принимается во внимание микроструктура материала при переходе от упругих к вязко-упругим решениям, вместо эффективных характеристик используются характеристики отдельных фаз.  [c.165]

Проведенные Томпсоном и др. [83] исследования стержневого эвтектического сплава Со — Сг с карбидным упрочнением свидетельствуют о прочности связи и высокотемпературной стабильности поверхности раздела. Характеристики кратковременной и длительной прочности приведены на рис. 21. Микроструктура эвтектики практически стабильна вплоть до 1370 К, а эвтектический сплав обладает более высоким сопротивлением ползучести, чем традиционный жаропрочный сплав на кобальтовой основе Маг М-302. Судя по энергии активации, процесс ползучести определяется упрочняющей карбидной фазой, что также подтверждает эффективность передачи нагрузки через поверхность раздела.  [c.263]

В отличие от механических свойств, установленных для Широкого круга композитов с металлической матрицей, характеристики микроструктуры, и особенно области раздела фаз, исследо-  [c.263]

Первый толчок к основательному пересмотру концепции однородного слоя дало появление новых видов армирующих материалов и в первую очередь моноволокон бора, диаметр которых уже не был на порядок меньше толщины слоя. Этот факт заставил обратить более пристальное внимание на взаимосвязь поведения композитного материала с его микроструктурой. Именно с этого времени началось серьезное развитие микромеханики композитов [18—20]. Вместо бесконечно малого объема dx., dy, dz квазиоднородного композита в качестве представительного объемного элемента материала стали рассматривать моноволокно арматуры, помещенное в матрицу, имеющую форму прямоугольной призмы. На основе этого нового структурного элемента, зная геометрические параметры, можно оценить практически все характеристики композита через свойства армирующих волокон и матрицы.  [c.251]

В монографии изложены основные направления и методы исследования свойств металлических порошков дисперсионный анализ, включающий анализ порошков по фракциям, измерение удельной поверхности, определение размеров, форм, микроморфологии и микроструктуры отдельных частиц испытание физических и физико-механических свойств, определяющих плотностные, реологические и электромагнитные характеристики порошков рентгенографические методы исследования структурных несовершенств и инструментальные физические методы локального и общего химического анализа способы анализа фаз и, наконец, оценка условий безопасной работы с порошками.  [c.111]


При изыскании новых путей автоматизации средств тепловой микроскопии необходимо учитывать вопросы стандартизации и унификации аппаратуры, а также максимального сопряжения установок с математическими средствами обработки результатов эксперимента. Схема принципиально возможной, полностью автоматизированной системы проведения исследований на установках для тепловой микроскопии представлена на рис. 2. Как видно из рассмотрения данной схемы, автоматизация обработки информации, получаемой по всем трем основным каналам, должна предусматривать наличие специального блока обработки экспериментальных данных /, включающего в себя малогабаритную электронную вычислительную машину и систему ввода данных, полученных с помощью блока аппаратурного анализа микроструктуры //, блока регистрации изменений физических характеристик ///и блока регистрирующих механических свойств IV, а также дополнительные устройства для печатания (телетайп) V и графической выдачи результатов VI.  [c.10]

Таким образом, описанные эксперименты показали целесообразность применения комплексной методики изучения поведения армированных композиций в условиях высокотемпературного нагрева путем определения механических характеристик образцов с одновременным наблюдением их микроструктуры.  [c.274]

Принципиально использование резервов, обеспечивающих прирост информационной мощности и производительности аппаратуры, а также повышение качества получаемой информации может быть представлено схемой, приведенной на рис. 179. Автоматизация обработки информации, получаемой по всем трем каналам, должна предусматривать наличие специального блока обработки экспериментальных данных /, включающего в себя малогабаритную электронную вычислительную машину и систему ввода данных, полученных с помощью блока аппаратурного анализа микроструктуры II, блока регистрации изменений физических характеристик III и блока регистрации механических свойств IV, а также дополнительные устройства для печатания типа телетайпа V и графической выдачи результатов VI.  [c.280]

Эпоха освоения космоса предъявляет к материалам новые требования. Привычные понятия прочности и упругости стали недостаточными для полной характеристики механического поведения конструкционных материалов. На первый план выступает их микроструктура, те превращения, которые происходят с ней под воздействием сверхвысокого вакуума, протонного, электронного и космического излучений.  [c.142]

В этом разделе желательно было бы представить те теории, которые количественно предсказывают характеристики КР высокопрочных алюминиевых сплавов только на базе микроструктуры и состава сплава. В действительности нет такой теории и даже нет ни одной успешной попытки относительно установления связи между КР и микроструктурой алюминиевых сплавов на количественной основе. Это тем более удивительно, поскольку сотни статей посвящены взаимосвязи микроструктуры с КР алюминиевых сплавов. Даже одна из наиболее важных технологических разработок, позволяющая значительно повысить сопротивление КР путем перестаривания дисперсионно твердеющих сплавов, до сих пор не была проанализирована количественно.  [c.293]

Вышеуказанные положения относятся к усредненной четко выраженной текстуре плит и листового материала и не дают полного описания характеристик микроструктуры. В работе [243] отмечено, что при горячей обработке в области высоких температур в сплаве Ti — 6 А1 — 4V образуются пластинчатые структуры, в которых группы пластин а-фазы общей ориентации концентрируются в локализованной зоне. Такие структуры без сомнения относятся к структурам с колониями а-фазы, о которых упоминалось выше. Как было показано, такие структуры не оказывают ярко выраженного влияния на КР. Однако осторожность должна быть проявлена в случае изгиба деталей большого сечения с пластинчатой структурой. Возможно, что подобная ситуация может возникать в случае алюминиевых сплавов, в которых высотное направление наиболее опасное. Можно ожидать, что для титановых сплавов важным фактором является боковая протяженность пластин структуры а-фазы, хотя это не было исследовано подробно. Существование таких полос в структуре обусловливает, вероятно, области полосчатости, наблюдаемые на многих поверхностях разрушения (см. рис. 109, а). Если это справедливо, то небольшая боковая протяженность полосчатости указывает, что полосы имеют подобный небольшой боковой размер, поэтому такие структуры могут быть более точно определены как двояковыпуклые, а не пластинчатые.  [c.423]

Анализ разрушения низкоуглеродистой стали по механизму скола показал, что макроскопическое разрушение можно связать с его микромеханизмом и что он в свою очередь зависит от состояния микроструктуры и характеристик текучести материала. В определенных случаях можно воздействовать на микроструктуру и микропроцессы разрушения так, чтобы улучшить макроскопические характеристики металла. Очевидно необходимы дальнейшие детальные исследования микромеханизма разрушения стали для установления технологических пределов сопротивления разрушению более сложных материалов. Некоторые работы этого направления кратко будут освещены в гл. VIII, раздел 10.  [c.189]

Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]


Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]

Все изложенные выше примеры, анализ доступных литературных данных позволяют сделать вывод о том, что вихревые трубы использовались лишь в условиях отсутствия вторичного центробежного поля сил, накладываемого на основное, создаваемое закручивающим устройством. Поэтому отсутствуют исследования характеристик процесса энергоразделения в вихревых трубах в условиях воздействия на них вторичного поля инерционных сил. Тем не менее, очевидно, что оно определенным образом искажает обычную картину течения в камере энергоразделения вихревых труб. Такое воздействие должно сопровождаться не только изменением характеристик макроструктуры потока, но и характеристик его микроструктуры. На каждый турбулентный микро-или макровихрь в зависимости от его расположения в объеме камеры энергоразделения и собственных размеров действует своя дополнительная сила инерции, зависящая от частоты вращения ротора и радиуса от центра элемента вихря до оси.  [c.379]

В связи с этим следует отметить, что числа Рейнольдса потока, полученные при обработке результатов для пористых порошковых металлов с помошью параметра ( /а, существенно меньше соответствующих значений, рассчитанных при использовании в качестве характерного размера диаметра пор d или частиц d , хотя условия всех экспериментов и характеристики матриц примерно одинаковы. Поскольку параметр fij t таких металлов обычно значительно меньше геометрических размеров пористой микроструктуры (что нетрудно показать на основании данных табл. 2.1), то использование параметра j3/a передвинуло бы зависимости, приведенные на рис. 2.7, из области Re > 1 и сблизило бы их в области Re < 1. В тех случаях, когда пористый металл изготовлен из мелкого порошка и или d малы и близки к /3/а, критериальные уравнения близки к тем, в которых в качестве характерного размера использована величина 0/а. Однако такое представление экспериментальных данных, приведенных в табл. 2.4, невозможно из-за отсутствия необходимых сведений.  [c.41]

Мультифрактальный анализ нашел широкое применение в теории Д1ша-мических систем [26]. Показана связь между традиционными характеристиками хаотического движения и обобщенными фрактальными размерностями. Первые исследования по применению мультифрактального формализма для компьютерного анализа микроструктур и поверхностей изломов были выполнены Г.В. Встовским и др. [20].  [c.120]

По изменениям микроструктуры, микротвердости и состава поверхностных слоев оценены реальные температуры разогрева образцов И элементов камеры 120...760 С в зависимости от расстояния от источников плазмы. Получены данные по прочностным характеристикам испыт ((ных сталей при ресурсах до 4000 чосов.  [c.102]

Поскольку спектральный коэффициент излучения зависит не только от физических характеристик материала излучателя, но и от состояния (микроструктуры) излучан1щей поверхности, то получить аналитические ави-  [c.43]

Часто структура материала оказывает такое влияние на процесс изнашивания, что механические характеристики материала уже недостаточны для оценки интенсивности процесса. Так, исследования изнашивания чугуна для направляющих скольжения станков, приведенные в ЭНИМСе (В. Н. Митрович), показали, что твердость по Бринеллю не определяет однозначно скорости изнашивания. Необходимо учитывать также микротвердость перлита, расстояние между включениями графита, их размеры и другие характеристики микроструктуры.  [c.246]

Несмотря на то, что количественные критерии, определяющие как вязкое, так и хрупкое разрушение композиционных материалов при комбинированном нагружении, еще далеки от завершения, состояние этого вопроса достигло такого уровня, при котором возможно достаточно точно предсказать поведение проектируемых или рассчитываемых конструкций, если известны основные характеристики композиционного материала. В отличие от металлов слоистый композиционный материал обладает такими особенностями, как неоднородность и анизотропия. По микроструктуре материал является двухфазным и состоит из волокон и матрицы или связующего (полимерного, металлического и др.), а макроструктура материала образуется из ориентированных слоев волокон, заключенных в связующем (рис. 3). Явления, протекающие на микроуровне, определяют формы разрушения и другие подобные характеристики материала, рднако механизм и взаимодействие этих явлений изучены еще недостаточно полно. Большинство инженерных расчетов основано поэтому на макромодели, согласно которой основным элементом материала, в котором происходит разрушение, является армированный слой.  [c.67]

Простота применения и точность метода Фурье была отмечена и другими авторами, изучавшими распространения волн в монолитных полимерных материалах. Например, Кнаусс [60] проанализировал нестационарные колебания аморфных полимеров в вязкоупругой переходной зоне из стеклообразного в каучукоподобное состояние. Мао и Радер [65] использовали этот метод для исследования распространения импульсов напряжений в стержнях из полиметилметакрилата, обладающего малым тангенсом угла потерь. Однако пока в литературе не встречаются результаты исследования методом Фурье влияния микроструктуры на стационарные волновые процессы в композитах. Для изучения этого вопроса можно было бы прямо применить описанные в предшествующем пункте приближенные методы по-видимому, в них можно было бы учесть различные представления вязкоупругих характеристик компонентов композиционных материалов. Хотя при использовании численного решения график функции изменения импульса напряжений от времени может иметь большую кривизну, вязкоупругое затухание обычно устраняет этот недостаток, за исключением окрестности точки приложения нагрузки. Применение так называемого метода быстрого преобразования Фурье [79] так же могло бы существенно упростить исследование.  [c.182]

Композит А1 — AbNi обладает превосходной термической стабильностью вплоть до температур, составляющих 0,97 эвтектической температуры, и не обнаруживает снижения прочности при умеренных температурах [4]. Сопротивление ползучести (100-часовая прочность) также не снижается при температуре, составляющей 0,9 эвтектической [73]. Значения данной характеристики при температурах, не превышающих 0,6 эвтектической, растут с уменьшением расстояния между нитевидными кристаллами (стерженьками) упрочняющей фазы [7]. Однако характеристики ползу-ч-ести чрезвычайно чувствительны к структурным несовершенствам микроструктура, в которой нарушено направленное расположение волокон, обладает при тех же температурах гораздо более низким сопротивлением ползучести [7].  [c.262]


Катоды этих ламп должны иметь различные сочетания механической прочности, долговечности и эмиссионных характеристик. Для достижения этой цели используются спеченные смеси вольфрама, никеля и алюмината бария или оксиси бария. На рис. 11 показана микроструктура материала одного из катодов.  [c.443]

Современное понимание зарождения усталостных трещин в армированных волокнами металлах можно резюмирова1ь следующим образом. Зарождение усталостных трещин в композитах отличается от зарождения усталостных трещин в металлах только тем, что, кроме свободных поверхностей, играющих роль мест зарождения трещин, новым источником усталостных трещин в композитах служат разорванные волокна. Эта проблема, естественно, является более острой для случая хрупких волокон, наличия хрупких покрытий на волокнах или хрупких продуктов реакций на поверхностях раздела. Важно, что зарождение трещин происходит во внутренних точках и не без труда поддается наблюдениям или контролю методами неразрушающих испытаний. Будут ли усталостные трещины зарождаться на самом деле у разорванных волокон или нет, зависит от величины соответствующего коэффициента интенсивности напряжений, который пропорционален диаметру волокна (длине начальной трещины) и амплитуде напряжений. Последующий рост трещин определяется упругими свойствами, пределом текучести и характеристиками механического упрочнения компонентов, а также прочностью границы раздела волокна и матрицы и ее микроструктурой.  [c.410]

Термическая обработка стали 15Х11МФБЛ проведена по режиму нормализации при 1100°С, вьщержка 4—5 ч, отпуск при 740—760 °С, вьщержка 12 ч. Микроструктура представляла собой игольчатый сорбит отпуска. Свойства стали при нормальной температуре удовлетворяли требованиям ТУ по всем характеристикам механических свойств.  [c.80]

Параметрическая диаграмма длительной прочности в полной мере отражает влияние структуры стали 12Х1МФ на долговечность. Например, в случае металла повышенной прочности по сравнению со среднемарочными характеристиками со структурой игольчатого сорбита отпуска (балл 1 шкалы микроструктур ТУ 14-4-450-75) и феррито-сорбитной структурой (балл 2—5 шка-  [c.108]

По техническому заданию лаборатории высокотемпературной металлографии Института машиноведения Фрунзенский зафд контрольно-измерительных приборов осуществил разработку проектно-технической документации и в 1968 г. начал серийный выпуск установки ИМАШ-10-68, созданной на базе аппаратуры ИМАШ-ЮМ и имеющей близкие к ней характеристики [49, с. 25—32]. Эта установка предназ1йачена для исследования микроструктуры образца с одновременной регистрацией изменения его электросопротивления в процессе испытания на усталость металлов и сплавов при знакопеременном изгибе в условиях нагрева.  [c.143]

Все это не означает, что процесс зарождения и развития усталостной трещины протекает идентично на обычной и высокой частоте циклического нагружения. Имеются экспериментальные доказательства того, что на микроструктуриом уровне существуют отличия и в процессе накопления усталостных повреждений и в строении усталостных изломов (на работы такого плана даны ссылки в [2]). В ряде исследований, однако, показано, что рассматриваемые различия для некоторых материалов незначительны, а для многих материалов — не столь существенны, чтобы не было оснований считать оправданным подход, предполагающий прямое количественное сопоставление характеристик усталости, полученных на обычных  [c.332]


Смотреть страницы где упоминается термин Микроструктуры — Характеристики : [c.5]    [c.68]    [c.167]    [c.198]    [c.78]    [c.258]    [c.33]    [c.258]    [c.261]    [c.205]    [c.407]   
Ковка и штамповка Т.1 (1985) -- [ c.145 , c.146 ]



ПОИСК



657 - Требования к характеристикам графита и микроструктуре 657 - Режимы

Безобразцовые методы оперативного контроля механических характеристик и микроструктуры металла теплоэнергетического оборудования

Микроструктура

Связь характеристик микроструктуры полей скорости и температуры с характеристиками усредненных полей

Сталь хромированная Микроструктура хромистая высоколегированная — Характеристика

Форма отчета к работам, в которых приводятся зарисовки и характеристика микроструктуры сплавов



© 2025 Mash-xxl.info Реклама на сайте