Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источники плазма

АНАЛИЗ ХАРАКТЕРА ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПЛАЗМЕННОЙ СТРУИ ТЕХНОЛОГИЧЕСКИХ ИСТОЧНИКОВ ПЛАЗМЫ НА ВЫСОКОХРОМИСТЫЕ СТАЛИ АУСТЕНИТНОГО И МАРТЕНСИТНОГО КЛАССОВ  [c.101]

Схема с изолированным источником плазмы — схема ионно-плазменного распыления, при которой плазма генерируется в ионизационной вспомогательной камере, откуда сформированный сильным магнитным полем узкий ионный пучок ее диффундирует в главную распределительную камеру с расположенной в ней мишенью, имеющей потенциал, достаточный для ускорения ионов до энергий, необходимых для распыления материала мишени.  [c.428]


Заряж. частицы в слое Е образуются в результате фоте ионизации газа под действием УФ-излучения. Эти заряж. частицы дрейфуют в нижние слои атмосферы и служат источником плазмы в И-слое ионосферы. Плотность электронов в -слое 10 см" , отрицат. ионы в  [c.355]

Рио. 5. Контактное микрографическое изображение живого тромбоцита человека, полученное с использованием импульсного рентгеновского источника (плазма пробоя в газе). На изображении различимы детали размером менее 10 нм.  [c.368]

Э. и. чрезвычайно широко реализуется в природе и применяется в технике. На эффектах Э. и. базируется устройство электромоторов и генераторов тока разного типа, трансформаторов, измерит, приборов, индукционных нагревателей, ускорителей элементарных частиц, источников плазмы в термоядерных реакторах, эл.-магн. движителей, магн. подвесок и т.д.  [c.538]

Оборудование для ионно-плазменного нанесения покрытий. Система оборудования для ионно-плазменных покрытий связана с источником плазмы, выбранным для осуществления технологического процесса [2, 6, 10, 18—21] (рис. 1.13). В систему входят распылительное (испарительное) устройство 1, предназначенное для создания ионизированного потока пара материала покрытия. В случае применения тлеющего (или дугового) разряда испарение происходит из твердой фазы, при этом распыляется катод (мишень). Для термического испарения из жидкой фазы используется дуговой разряд. При этом испаряется анод, который выполнен в виде тигля, заполненного материалом покрытия. Однако если этот материал при заданном режиме испарения может сублимировать, то испарение происходит из твердой фазы  [c.435]

При легировании поверхностей режущего инструмента могут быть использованы и другие источники плазмы - электронный луч (при электронно-лучевом легировании) и дуговой разряд (при плазменном легировании).  [c.106]

Используя вакуумно-дуговые источники плазмы, можно успешно наносить жаростойкие покрытия. Для получения таких покрытий необходимо изготавливать расходуемый катод из сплавов, обладающих требуемым свойством. Как показала практика применения вакуумно-дуговых испарителей с охлаждаемым катодом, в области катодного пятна происходит быстрое взрывное испарение материала. Поэтому отдельные компоненты сплава даже при большой разнице в упругости пара практически не успевают разделяться. В результате состав покрытия отличается от исходного состава сплава.  [c.339]

Плавку стали в плазменно-дуговых печах применяют для получения высококачественных сталей и сплавов. Источник теплоты в этих печах — низкотемпературная плазма (30 000°С), получаемая в плазменных горелках. В этих печах можно создавать нейтральную среду заданного состава (аргон, гелий). Плазменно-дуговые печи позволяют быстро расплавить шихту, а в нейтральной газовой среде происходит дегазация выплавляемого металла, легкоиспаряющиеся элементы, входящие в его состав, не испаряются.  [c.48]


По сравнению с аргонодуговой сваркой вольфрамовым электродом плазменная дуга имеет ряд преимуществ. Во-первых, она является более концентрированным источником теплоты и вследствие этого обладает большей проплавляющей способностью. Плазменной дугой можно сваривать металл толщиной до 10 мм без разделки кромок и применения присадочного металла. При этом снижается тепловое влияние дуги на свариваемый металл и уменьшаются сварочные деформации. Во-вторых, плазменная дуга обладает более высокой стабильностью горения, что обеспечивает повышенное качество сварных швов. Это позволяет выполнять так называемую микро-плазменную сварку металла толщиной 0,025—0,8 мм на токах 0,5— 10 А. В-третьих, увеличивая ток и расход газа, можно получить так называемую проникающую плазменную дугу. В этом случае резко возрастет тепловая мощность дуги, скорость истечения и давление плазмы. Такая дуга дает сквозное проплавление и выдувает расплавленный металл (процесс резки). Недостаток плазменной сварки — недолговечность горелок вследствие частого выхода из строя сопел и электродов.  [c.200]

Суи ествует высокотемпературная плазма. В недрах Солнца сжатая плазма имеет температуру свыше 10 ООО ООО К. Прн этой температуре атомные ядра сталкиваются с такой силон, что соединяются между собой. Происходят термоядерные реакции, приводящие к превращению водорода в гелий и выделению громадного количества энергии. Именно эта энергия, излучаемая Солнцем, н была до сего времени источником жизни.  [c.290]

Пренебрегая очень небольшой долей энергии, получаемой ионами при их ускорении в продольном поле (ионный ток мал), можно считать, что вся энергия, отбираемая разрядом от внешнего источника в столбе дуги, переходит непосредственно к электронам плазмы.  [c.58]

Важным фактором при ручной сварке является устойчивость дуги. На устойчивость дуги оказывают влияние внутренние условия в самой дуге (состав и свойства плазмы) и внешние условия — статические и динамические свойства источника питания и свойства электрической цепи, определяющие в большой мере переходные процессы в дуге.  [c.94]

В связи с этим разрабатываются и находят промышленное применение (помимо электродуговой) другие методы плавки, в которых сохраняется принцип гарнисажной плавки в вакууме, но вместо электрической дуги - источника тепловой энергии используют энергию электронного луча или плазмы. Ведутся исследования по применению индукционного способа плавки титановых сплавов в так называемых холодных тиглях.  [c.312]

В спектральном анализе помимо этих основных применяются и другие источники света. К их числу относятся разрядные трубки с полым катодом, плазменные горелки (плазмотроны), представляющие собой генераторы потока плазмы, образующегося при нагревании инертного газа электрической дугой, оптические кван-  [c.7]

Выбор способа освещения щели спектрографа в значительной степени определяется целями и особенностями выполняемой работы. Для количественного спектрального анализа требуется равномерное освещение щели. Если проводится изучение пространственной структуры источника света (например, распределения температуры, концентрации электронов по различным зонам облака светящейся плазмы), щель нужно осветить так, чтобы распределение освещенности по ее высоте совпадало с распределением яркости в источнике света. При любом способе освещения щели правильные результаты измерений интенсивностей спектральных линий могут быть получены лишь в том случае, если освещенности в сопряженных точках щели и ее изображения пропорциональны. В частности, равномерной освещенности щели должно отвечать равномерное распределение освещенности по высоте изображения, т. е. вдоль изображения спектральной линии.  [c.20]

По изменениям микроструктуры, микротвердости и состава поверхностных слоев оценены реальные температуры разогрева образцов И элементов камеры 120...760 С в зависимости от расстояния от источников плазмы. Получены данные по прочностным характеристикам испыт ((ных сталей при ресурсах до 4000 чосов.  [c.102]


Ионно-плазменное распыление с плазмо-химическим источником типа <АРа-дикалу> — разновидность ионно-плазменного распыления с изолированным источником плазмы, при котором в плазму источника вводится химическое соединение, участвующее в процессе формирования физической структуры.  [c.428]

Параллельно возникли и развивались направления, связанные со слабоионизованной плазмой. Открытие плазменно-пучкового разряда (1961) послужило основой создания новых источников плазмы, использующих энергию плотных электронных пучков для ионизации газа. Создаваемая в таких источниках плазма оказалась сильно неравновесной с большим числом возбуждённых ионов, атомов и молекул в метастабиль-ных состояниях, инициирующих ряд новых типов плазмохим. реакций. Неравновесная плазма пучкового разряда является рабочим веществом в плазмохим. реакторах по разделению изотопов, в квантовых генераторах когерентного излучения — плазменных лазерах и мазерах и др.  [c.606]

Принцип работы П. заключается в следующем. Холодный газ непрерывным потоком продувают через область, где горит стационарный разряд газ нагревается, ионизуется, превращается в плазму, к-рая вытекает из области разряда в виде плазменной струи чаще всего прямо в атмосферу (тогда и давление в плазме атмосферное). На практике обычно применяются П., работающие на дуговом, разряде, Пеннинга разряде, ВЧ- И СВЧ-раз-рядах. Импульсные источники плазмы, работающие, напр., на искровом разряде, к П. не относятся. Кроме ионизации газа в электрич. разряде значительно реже используется ионизация газа электронным пучком. Принципиально можно нагревать и ионизировать газ мощным лазерным излучением для создания оптич. П.  [c.616]

Широкое распространение получили методы диффузионной ХТО с использованием различных источников плазмы. Наиболее освоенным и применяемым в отечественной промышленности является метод ионного азотирования в низкотемпературной плазме тлеющего разряда. Способы диффузионного насыщения поверхности инструментальных сталей - азотирование, карбонитрация, цементация и другие выгодно отличаются от классических видов ХТО, проводимых либо в печах, либо в соляных ваннах. Так, например, при ионном азотировании скорость обработки по сравнению со скоростью при обычном печном азотировании возрастает в  [c.103]

Газ, подаваемый в горелку и омывающий центральный электрод, служит основным источником плазмы. В качестве плазмообразующих газов используют аргоно-водородную или азото-водо-родную смесь, сжатый воздух и другие газы.  [c.25]

Если говорить о взаимодействии лазерного излучения с плазмой в широком смысле этого термина, то речь должна идти об очень широком круге вопросов. Это, во-первых, различные процессы, приводящие к образованию плазмы в газах, жидкостях и прозрачных телах,— оптический пробой газов (лекция 16), опти-ко-акустпческий зффект (лекция 17), оптический пробой про-зрачны. диэлектриков (лекции 18). Во-вторых, это различные лазерные методы диагностики плазмы, теневое фотографирование, интерферометрия, голография, томсоновское рассеяние, спектроскопия (о некоторых из этих методов речь шла в лекции 21). В-третьих, это различные источники плазмы и мотоды поддержания и распространения разрядов [1]. Наконец, это проблема нагревания плазмы и, в первую очередь, ее термоядерный аспект.  [c.260]

Данный способ регистрации оказывается ограниченным со стороны малых плотностей плазмы из-за того, что затухание ударной волны начинается в этом случае раньше, чем достигается насыщающая толщина излучающего слоя. Поэтому при регистрации малых коэффициентов поглощения были поставлены эксперименты [38] в несколько измененной редакции, использующей взрывные ударные трубы в качестве источника плазмы воздуха. Затухание ударных волн в таких системах приводило к появлению максимума регистрируемой зависимости положение которого позволяло найти в каждом опыте значение а , а другие параметры ударного сжатия оценить на основе газодинамических данных. Полученные результаты послужили основой для оценки сечения фотораспада отрицательного иона азота.  [c.357]

Экспериментально установлено, что в любой момент времени достаточно площади одного работающего анода, чтобы генерируемая в источнике плазма заполнила весь объем разрядной камеры. Однако при питании переменным током концентрация плазмы, ее потенциал и электронная температура пульсируют с частотой напряжения разряда. К радиальной неравномерности распределения плотности ионного тока в выходном сечении разрядной камеры, характерной для источника кауф-мановского типа, питаемого постоянньп током, при переходе на переменный ток добавляются пульсации плотности тока по времени. Пульсации ионного тока ухудшают работу ионно-оптической системы двигателя. Они могут быть уменьшены за счет увеличения частоты питания разряда (до 2 - 2,2 кГц), числа анодов (до 6 - 9) и др.  [c.95]

Низкотемпературная плазма (температура IOOOK) находит применение в газоразрядных источниках спета и в газовых лазерах, в термоэлектронных преобразователях тепловой энергии в электрическую и Б магиитогидродннамических (МГД) генераторах.  [c.290]

Дуга переменного тока может гореть не весь полупериод, а только часть его. Время перерыва в горении дуги обычно тем больше, чем меньше время существования остаточной термоэмиссии с электродов, чем быстрее происходит распад плазмы столба, чем длиннее дуга и хуже динамические свойства источника питания.  [c.91]

Следует заметить, что приведенные оценки (сТког = 3+30 см) хорошо согласуются с результатами эксперимента при использовании обычных источников света (например, газоразрядной плазмой низкого давления), но не лазеров. Эффект генерации в лазере связан с выкужденкым излучением, а не со случайными (спонтанными) переходами, которые рассматрипа.т1ись при построении тех или иных статистических схем. Для лазера T or значительно больше, чем для обычных источников света. Это демонстрируется опытом с неон-гелиевым лазером, в котором интерференция наблюдается при разности хода в несколько десятков метров (см. 5.6).  [c.189]


Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

В эксперименте интерферометр освещался светом неон-гелиевого лазера, излучающего одну частоту. Это позволило удалить подвижное зеркало М2 на несколько метров и продемонстрировать возможность наблюдения интерференции при столь большой разности хода, так как длина когерентности для лазерного излучения значительно больше Lkq,- 3 30 см, характерной для обычных источников света. Но очевидно, что если зеркало М2 будет передвигаться на расстояние, меньшее 1-ког ( о близко к нулю — световые пути внутри интерферометра примерно равны, Д/ изменяется в пределах нескольких сантиметров), то анало гичная интерференционная картина будет наблюдаться при освещении интерферометра светом обычного (нелазерного) источника, например спектральной линией, излучаемой газоразрядной плазмой, с шириной й/.дои В этом убеждают нас, в частности, классические опыты Майкельсона, который измерял видимость V интерференционных колец при постепенном увеличении разности хода, создаваемой перемещением зеркала М2. Но если при остановках зеркала М наблюдалась стационарная интерференционная картина, то при его движении в указанных пределах неизбежно должен возникать плавный переход от одной стационарной картины к другой, т.е. ее изменение во времени, и появится бегущая интерференционная картина.  [c.396]

К настоящему времени Не сделан выбор в пользу определенной комбинации многослойных материалов (и технологий их получения) -ДЛЯ дивсрторных пластин термоядерного реактора (ТЯР), температ а которых может превышать 1500К. Многослойной в большинстве со-времеыных проектов ТЯР является и первая стснка, изготовленная иЗ стали и защищенная пластинками графита, молибдена, карбида титана и т. п. Правда, рассматривается возможность [1] эксплуатации и не защищенной ПС, поскольку элементы соединения могут стать дополнительными источниками облегченного разрушения конструкции за счет циклического теплового воздействия плазмы. Это замечание относится и к многослойным пластинам.  [c.195]


Смотреть страницы где упоминается термин Источники плазма : [c.44]    [c.101]    [c.101]    [c.102]    [c.251]    [c.33]    [c.396]    [c.397]    [c.152]    [c.399]    [c.44]    [c.45]    [c.102]    [c.103]    [c.233]    [c.401]    [c.118]    [c.218]    [c.218]   
Восстановление деталей машин (2003) -- [ c.237 ]



ПОИСК



Плазма

Стандартный источник, абсолютно высокоионизованная плазм

Тарасов А. Н АНАЛИЗ ХАРАКТЕРА ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПЛАЗМЕННОЙ СТРУИ ТЕХНОЛОГИЧЕСКИХ ИСТОЧНИКОВ ПЛАЗМЫ НА ВЫСОКОХРОМИСТЫЕ СТАЛИ АУСТЕНИТНОГО И МАРТЕНСИТНОГО КЛАССОВ



© 2025 Mash-xxl.info Реклама на сайте