Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прокатка расплава

Центробежная закалка, прокатка расплава Высокие прочность и вязкость, возможность деформирования  [c.27]

Рис. 2.6. Методы получения тонкой ленты путем закалки из расплава а — центробежная закалка б — закалка на диске в — прокатка расплава г — центробежная закалка д — планетарная закалка на диске Рис. 2.6. <a href="/info/473555">Методы получения</a> тонкой ленты путем закалки из расплава а — <a href="/info/116765">центробежная закалка</a> б — закалка на диске в — прокатка расплава г — <a href="/info/116765">центробежная закалка</a> д — планетарная закалка на диске

К способам литья с двухсторонним охлаждением относятся методы сверхбыстрой закалки типа ковки и прокатки расплава. При методе ковки (рис. 8.10, а) капля расплава (массой 0,2+2 г) раздавливается с двух сторон- между двумя массивными холодными медными пластинами, приводимыми в движение с помощью фотоэлемента. Этот метод удобен для экспериментов. Получаемые пластинки толщиной 5+200 мкм имеют неправильную форму, но более равномерны по своему фазовому составу, структуре и свойствам, чем при методах литья с односторонним охлаждением. Скорость охлаждения может превышать 10 +10 К/с. Основной недостаток метода в небольших габаритах получаемого продукта.  [c.397]

Метод прокатки расплава в валках, при котором капля или струя расплава попадает в зазор между двумя быстровращающимися металлическими валками, прижатыми друг к другу с силой до 200+1000 Н (рис. 8.10, б), позволяет получать однородную по сечению, широкую непрерывную ленту равномерной толщины (5+200 мкм). В усовершенствованных двухвалковых установках для сверхбыстрой закалки получается аморфная лента длиной до 1000 м. Скорость охлаждения составляет 10 +10 К1с. Этот метод сверхбыстрой закалки оказывается самым тяжелым в конструктивном исполнении и самым капризным методически.  [c.398]

При использовании способа закалки в валках ленту получают прокаткой расплава между двумя валками. Основное достоинство способа - двустороннее охлаждение расплава что позволяет получать ленты с высоким качеством поверхности с обеих сторон. Однако вследствие того, что зона контакта расплава с  [c.308]

Таким образом, натрий-бор-силикатные расплавы могут эффективно использоваться не только в качестве защитной и смазывающей среды при термической обработке и прокатке различных марок сталей, но и для удаления окалины с их поверхности в процессе нагрева под термическую обработку, что уменьшает  [c.172]

Неуклонное повышение требований, предъявляемых к качеству отливок и к производительности и экономичности процессов литья, привело к появлению, особенно в последние годы, большого количества новых способов литья получение отливок в оболочковых формах в формах, изготовленных по выплавляемым моделям в формах, уплотненных прессованием под большим давлением литье вакуумным всасыванием, непрерывное литье в кристаллизатор и без кристаллизатора (вытягивание из расплава) жидкая прокатка и жидкая штамповка литье выжиманием жидкого металла, литье под низким давлением и много других.  [c.148]

Измерение [вязкости (G 01 N 11/00-11/16 расплава в ковшах В 22 D 2/00) G 01 ( импульсов ускорения Р 15/00 коэффициента шума R 29/26 крутящего момента L 3/00 мощности L 3/00-5/28, R 21/00-21/14 работы L 3/00-5/28 сил L 1/00-1/26 уровня жидкости F 23/00-23/76) емкости для измерения количества текучих материалов В 65 D 41/26, 41/56 количества жидкости в устройствах для розлива или отпуска В 67 D 5/08-5/30 температуры (расплава в ковшах В 22 D 2/00 шин транспортных средств В 60 С 23/20), при прокатке, гибке, штамповке, изготовлении проволоки В 21 С 51/00 смешивании В 29 В 7/28, 7/72 формовании изделий из В 29) пластических материалов) ]  [c.85]


Так как плотность стали в твердом состоянии выше, чем в жидком, по мере продвижения фронта кристаллизации к центру слитка уровень расплава медленно понижается, образуя усадочную раковину 4, которая удаляется вместе с прибыльной частью перед прокаткой слитка.  [c.186]

Пластичность и прочность полимеров можно резко изменять ориентацией полимерных цепей. Ориентацию производят горячей вытяжкой расплава с быстрым охлаждением, холодной вытяжкой или прокаткой. Разрушающее напряжение стеклообразных полимеров возрастает (часто очень резко) в направлении, параллельном оси ориентации, но уменьшается в перпендикулярном направлении [106—125]. Предел текучести Сту и модуль упругости Е изменяется аналогично однако степень возрастания oy и параллельно оси ориентации и уменьшения в перпендикулярном направлении несколько меньше, чем 0(,.  [c.169]

Прокаткой порошков можно получать конструкционные, сварочные, электротехнические, фрикционные, антифрикционные полуфабрикаты (листы, ленты, проволоку и др.), фильтры для очистки жидкостей, газов и расплавов, изделия, охлаждаемые выпотеванием, электроды электрохимического производства и топливных элементов, катализаторы, предохранители, дозаторы, элементы пневмотранспорта, сушильных, смесительных и флотационных машин — таков неполный перечень возможных областей применения пористого проката.  [c.97]

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобш,его внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены свер хвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились в реальность.  [c.26]

Далее коротко остановимся на методах получения аморфных сплавов закалкой расплава в условиях сверхбыстрого охлаждения, получивших применение в промышленности при производстве аморфных лент и микропроводов. Сверхбыстрое охлаждение обеспечивается выстреливанием жидкой капли струей инертного газа, центробежной закалкой, закалкой на диске, распылением, кавитационным методом, прокаткой расплава между двумя валками и др. (рис. 159). Эти методы рассмотрены в ряде монографий [426-428, 430].  [c.270]

Наиболее эффективными способами промьцп-ленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращаюпщхся барабанов или прокатку расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.  [c.860]

На рис. 27.1 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, вьщавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит в том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфщ.1х лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более. Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие ленты шириной 0,1-0,2 мм, так и  [c.860]


Известно изготовление аморфных порошков кавитационным методом, реализуемым прокаткой расплава в валках, и методом распыления расплава вращающимся диском. В кавитационном методе (рис. 27.3, б) расплавленный металл выдавливается в зазоре между двумя валками (0,2-0,5 мм), изготовленными, например, из графита или нитрида бора. Происходит кавитация — расплав выбрасывается валками в виде порошка, который попадает на охлажденную плиту или в охлаждающий водный раствор. Кавитация возникает в зазоре между валками, вследствие чего исчезают пузырьки газа, имеюпщеся в металле. Метод распьшения вращающимся диском (рис. 27.3, в) в принципе аналогичен ранее описанному методу изготовления тонкой проволоки, но здесь расплавленный металл, попадая в жидкость, разбрызгивается за счет ее турбулентного движения. При помощи этого метода получается порошок в виде гранул диаметром около 100 мкм.  [c.861]

Для получения аморфных металлов (металлические стекла) нужны скорости охлаждения порядка миллионов градусов в секунду. Такие скорости о.хлаждения достигаются при разбрызгивании мелких капель жидкого металла на хорошо отполированную поверхность быстро вращающегося холодного медного диска. Толщина пленки аморфного металла достигает нескольких микрометров (до 60 мкм) и ширины 200 мм или проволоки диаметром 0,5-20 мкм. Другой вариант - прокатка тонкой струи расплава между двумя массивными медными валиками, расплющиваюшими капли жидкого металла. При нагреве аморфный металл может реализовать свое стремление к кристаллизации и при достаточной подвижности атомов образуется кристаллическое строение.  [c.44]

Полученные в работах [3—5] данные позволяют утверждать, что натрий-бор-силикатные расплавы могут эффективно использоваться и в качестве безокислительной смазывающей среды при горячей деформации. В процессе прокатки на стане 360 образцов из сталей 08КП, ЭЗА, нагретых в натрий-бор-силикатных расплавах, получено снижение энергосиловых параметров прокатки (момента прокатки, давления и удельного усилия) в среднем в два раза по сравнению с печным нагревом [4].  [c.170]

Тараско Д. И., Говоров А. А., Помельникова А. С. Эффективность применения натрий-бор-силикатных расплавов для без-окислительного нагрева и термотравления сталей при прокатке. — В кн. Повышение эффективности производства и улучшение качества работь р свете решений XXV съезра КПСС. Новокузнецк, 1976, с. 83—84,  [c.172]

Керамические материалы не допускают прокатки и вытягивания из расплава. Керамика формуется и спекается с требуемыми допусками из сырья в виде очищенных окисных порошков, разбавленных органическими компонентами в качестве пластификатов, связок или смазок.  [c.417]

Охлаждение двигателей [F 01 (воздушное Р 1/00-1/10 жидкостное Р 3/00-3/22 роторных С 21/06) тепловозов и моторных вагонов В 61 С 5/02] деталей (газовых горелок F 23 D 14/78 металлорежущих станков В 23 Q 11/12) В 02 С (дисков в мельницах для измельчения материала 7/17 зерна при помоле 11/08) ж.-д. вагонов В 61 D 27/00 В 21 (заготовок (при ковке или прессовании J 1/06 или рабочего инструмента прессов С 29/00-29/04) инструментов для обработки металла давлением D 37/16 при ковке или штамповке К 29/00 листового металла при обработке давлением D 37/16 оправок для труб при прокатке В 25/04 проката В 45/02 станин прокатных станов В 43/00-43/12) В 60 (колес транспортных средств В 19/10 силовых установок на транспортных средствах К 11/00-11/08 транспортных средств Н 1/32 шин транспортных средств С 23/18-23/19) компрессоров F 04 (С 29/04 объемного В 39/06) конденсаторов пара F 28 В 1/00-5/00 F 21 V ламповых рефлекторов и осветительных приборов рефлекторов осветительных устройств) 7/20 29/00 ленточных пил В 27 В 13/16 литейных форм для (обработки расплава В 22 D 27/04-27/06 отливки стереотипов В 41 D 3/28) материалов (при дроблении В 02 С 11/08 В 65 (при загрузке или разгрузке баков, цистерн и т. п. D 88/74 при упаковке В 63/08) в промышленных печах F 27 D 15/02 при протягивании В 21 С 9/00-9/02) матриц при литье под давлением В 22 D 17/22 насосов (F 01-F 04 необьемного вытеснения F 04 D 29/58) перегретого пара в паровых котлах F 22 G 5/12-5 16 переносных инструментов ударного действия В 25 D 17/20-17/22 нечей F 27 (В 1/24 3/24, 7/38, 15/16  [c.128]

Текучие среды транспортирование изделий в их потоке или на их поверхности В 65 G 53/00 элементы схем для вычисления и управления с их использованием F 15 С 1/00) Тела вращения, изготовление прокаткой В 21 Н 1/00-1/22 Телевизионные камеры, размещение в промышленных печах F 27 D 21/02 приемники, крепление в транспортных средствах В 60 R 11/02 трубки, упаковка В 65 В 23/22) Телеграфные аппараты буквопечатающие знаки, устройства в пишущих машинах для их печатания) В 41 J 25/20 Тележки [для бревен в лесопильных рамах В 27 В 29/(04-10) с инструментом для работы под автомобилем В 25 Н 5/00 для подачи изделий к машинам (станкам) В 65 Н 5/04 подъемных кранов В 66 С <11/(00-26), 19/00 передаточные механизмы для них 9/14 подвесные (подкрановые пути для них 7/02 ходовая часть 9/02)> ручные В 62 В 1/00-5/06 для устройств переливания жидкостей на складах и т. п. В 67 D 5/64 ходовой части ж.-д. транспортных средств В 61 F 3/00-5/52] Телескопические [В 66 втулки для винтовых домкратов F 3/10 элементы в фермах кранов С 23/30) газгольдеры F 17 В 1/007, 1/20-1/22 В 65 G желоба 11/14 конвейеры с бесконечными (грузоне-сущими поверхностнями 15-26 тяговыми элементами 17/28)) колосниковые решетки F 23 Н 13/04 F 16 опоры велосипедов, мотощгклов и т. п. М 11/00 соединения стержней или труб В 7/10-7/16 трубы L 27/12) подвески осветительных устройств F 21 V 21/22 прицелы F 41 G 1/38 спицы колес В 60 В 9-28] Телеуправление двигателями в автомобилях, тракторах и т. п. В 62 D 5/(093-097, 32) Температура [G 01 N воспламенения жидкости или газов 25/52 размягчения материалов 25/04-25/06) определение закалки металлов и сплавов, определение С 21 D 1/54 измерение промышленных печах F 27 D 21/02 температуры (проката В 21 D 37/10 расплава В 22 D 2/00 шин транспортных средств В 60 С 23/20) >] Температура [клапаны, краны, задвижки, реагирующие на изменение температуры F 16 К 17/38 регулирование космических кораблях В 64 G 1/50 в сушильных аппаратах F 26 В 21/10 в транспортных средствах В 60 Н 1/00) электрические схемы защиты, реагирующие на изменение температуры Н 02 Н 5/04-5/06] Тендеры локомотивов (В 61 С 17/02 муфты сцепления В 21 G 5/02) Тензометры G 01 механические В 5/30 оптические В 11/16 электрические (В 7/16-7/20 использование для измерения силы L 1/22)> Теплота [c.187]


Важное значение имеет явление естественного старения на-водороженного титана. В закаленном (400° С) титане ударная вязкость при различном содержании водорода находится на более высоком уровне, чем после медленного охлаждения. Однако длительная выдержка при комнатной температуре приводит к закономерному снижению ударной вязкости закаленного титана до уровня медленно охлажденного. Отсюда следует, что при изготовлении полуфабрикатов малой толщины (тонкие листы, трубы и т. п.), охлаждающихся после горячей прокатки, термообработки или травления в горячем-щелочном расплаве с большой скоростью, наводороживание может быть не обнаружено при оценке качества  [c.118]

При нагревании торня для горячей обработки необходимо учитывать его химическую активность. Нагревание можно проводить в расплаве солей (смесь хлоридов бария, калия п натрия) [131] или торий можно покрывать другим металлом, например медью [721. Горячую обработку — прессование, ковку, прокатку, штамповку пли комбинацию этих операций — обычно производят при температуре 650—950 . Ввиду химического сродства нагретое тори я к кислороду и азоту воздуха сварку тория необходимо производить в защитной атмосфере инертного газа.  [c.805]

Потребности в аморфных материалах (в равной степени и в мелкокристаллических) для развития электротехнической, электронной, приборостроительной и других отраслей промышленности столь возрасли, что фактически в последнее десятилетие в технически развитых странах создана или находится на стадии создания новая технология металлургического производства. Принципиальное отличие этой технологии от традиционной состоит в том, что конечный продукт получается непосредственно из расплава в процессе одной операции — непрерывной разливки, минуя многоступенчатый и трудоемкий технологический цикл, состоящий из десятков операций (в том числе, из таких энергоемких, как ковка и прокатка). Экономическая целесообразность новой технологии во все большей степени будет проявляться по мере увеличения объема и номенклатуры продукции, а также совершенствования оборудования (в частности, в результате внедрения агрегатов высокой производительности— 1000 т и более в год). Следует также отметить, что технология получения конечного продукта непосредственно из расплава, по существу, имеет черты безотходной технологии.  [c.9]

Методы закалки из жидкого состояния имеют несколько разновидностей (см. табл. 2.1). Методы выстреливания, молота и наковальни, а также экстракции расплава позволяют получать тонкие аморфные пластинки массой до нескольких сот миллиграммов. Методами, использующими закалку на центрифуге, закалку на диске, прокатку расплавленного металла, можно получить непрерывные тонкие ленты. Эти методы могут быть использованы для промышленного производства аморфных металлов. В настоящее время для производства порошков начинают применяться такие методы, как распыления расплава (в том числе и центробежное распыление), кавитации, электроэрозии. Для производства тонкой проволоки используются мётоды экструзии расплава, вытягивания  [c.38]

Наиболее распространенная точка зрения на природу магнитной анизотропии, наводимой при прокатке, состоит в том, что этот вид анизотропии представляет собой как бы разновидность структурной анизотропии (см. 5. 4. 4), ио возникающей не под действием сдвиговых напряжений при аморфизации расплава на диске, а в результате формирования анизотропного распределения групп атомов (или атомных пар) при распространении деформации вдоль полос деформации. Полосы деформации располагаются перпендикулярло направлению прокатки, т. е. совпадают с индуцируемой осью легкого намагничивания. Концентрационная зависимость анизотропии прокатки не коррелирует с изменением А. и М,, слабо зависит от температуры отжига (см. [9] ). Прим. ред.  [c.159]

Твердожидкофазные способы используют для получения полуфабрикатов и изделий из КМ методами горячего прессования, волочения и прокатки пакетов, препрегов. Необходимым условием является нанесение матричного материала на ленты, препреги и ткани в таком количестве, чтобы его оказалось достаточно в жидкой фазе для равномерной пропитки волоконного каркаса расплавом. Прессование осуществляется в интервале кристаллизации сплава материала матрицы. Прессование КМ в условиях твердожидкого состояния матричных сплавов способствует снижению давления и уменьшает вероятность разрушения волокон.  [c.467]

Ситалловые изделия получают, как правило, путем плавления стекольной шихты специального состава, охлаждения расплава до пластического состояния и последующего, формования методами стекольной или керамической технологии (вытягивание, вьщувание, прокатка, прессование), а затем ситаллизацией. Такие изделия получают также порошковым методом спекания.  [c.359]

В книге рассмотрены методы повышения степени неравновесности системы — инжекционная и ультразвуковая обработка расплавов, комплексное легирование, сверхбыстрое охлаждение жидкого металла (аморфные сплавы), электростимулированная прокатка, негидростатическое сжатие (механическое легирование) и др. Оптимизация физикохимических процессов получения сплавов в неравновесных условиях связана с установлением параметров неустойчивости системы. В книге предлагается метод многопараметрической оптимизации фрактальной структуры конструкционных сплавов, позволяющий учесть наиболее благоприятное сочетание прочности и пластичности материала для будущих условий его службы. Заслуживает внимание и метод прогнозирования характеристик жаропрочности, трещиностойкости и хладостойкости на основе данных традиционных испытаний на растяжение и усталость гладких образцов.  [c.3]

Наиболее прогрессивной считается разливка стали на УНРС. В этом случае сталь из стопорного ковша через промежуточное разливочное устройство 9, обеспечивающее равномерность подачи расплава, поступает в водоохлаждаемый кристаллизатор 10. Проходя через него, сталь частично затвердевает, образуя корку на поверхности, которая граничит со стенками кристаллизатора, и опускается в зону вторичного охлаждения, где опорные ролики 11, повторяющие конфигурацию слитка, опрыскиваются водой из системы орошения 12. Ниже опорных располагаются тянущие ролики 13, обеспечивающие равномерность удаления из кристаллизатора слитка 14. Ацетиленокислородные резаки 15 позволяют разрезать непрерывно подаваемый слиток на мерные части, которые поступают на прокатку.  [c.185]

В настоящее время в индустриально развитых странах освоена технология получения в широких масштабах микрокристаллических сплавов Fe—Si, содержащих более 4 % (масс.) Si, в виде тонкой ленты (вплоть до толщины 15...20мкм) и листов, получаемых методом закалки из расплава. В микрокристаллическом состоянии эти сплавы обладают высокой технологической пластичностью — они вьщерживают без разрушения загиб до 180° на оправке диаметром 1...2мм. В результате быстрозакаленные электротехнические стали могут подвергаться холодной прокатке и другим механическим воздействиям. Например, лента сплава Fe—4,5 % Si шириной 100 мм и толщиной 0,28 мм, полученная закалкой из расплава по двухвалковой технологии, может без каких-либо трудностей подвергаться холодной прокатке до 0,06 мм.  [c.545]

В быстрозакаленной электротехнической стали может быть создана острая ребровая текстура (110)[001]. Для этого после закалки из расплава ленту подвергают холодной прокатке для формирования начальной текстуры деформации. Большое значение имеет режим холодной прокатки. Путем высокоскоростной деформации с большими обжатиями за каждый проход (е > 30 %) и суммарным обжатием выше 70 % формируется текстура деформации с острой преимущественной компонентой (111)[112]. Затем проводится высокотемпературный рекристаллизацион-ный отжиг в вакууме при 1150 °С, приводящий в результате избирательного роста зерен (вторичной рекристаллизации) к формированию острой ребровой текстуры (110)[001]. В сплаве Fe—4,5 % Si такая обработка обеспечивает чрезвычайно острую ребровую текстуру (с рассеянием всего 1,5°) и превосходные магнитные свойства. Ленты с толщиной 0,06 мм имеют индукцию в поле 640 А/м = 1,86 Тл, коэрцитивную силу = 2,4 А/м (30 мЭ), потери на перемагничивание Pj 25/50 Вт/кг, Pj 5/50 0,32 Вт/кг, Pj = 0,51 Вт/кг. Для сравнения укажем, что наилучшая промышленная анизотропная электротехническая сталь с совершенной ребровой текстурой имеет большие потери Pj 3 50 = 0,33 Вт/кг для ленты толщиной 0,04 мм).  [c.546]


Волокнистые композиты получают разными методами. К ним относятся пропитка пучка волокон жидкими расплавами алюминия и магния с низкой температурой плавления, плазменное напыление, применение методов горячего прессования, иногда с последующей гидроэкструзией или прокаткой заготовок. При армировании непрерывными волокнами композиций типа сэндвич , состоящих из чередующихся слоев алюминиевой фольги и волокон, применяют прокатку, горячее прессование, сварку взрывом, диффузионную сварку. Отливка прутков и труб, армированных высокопрочными волокнами, производится из жидкометаллической фазы. Пучок волокон непре-рьгоно проходит через ванну с расплавом и пропитывается под давлением жидким алюминием, магнием или жидкой смолой в случае изготовления полимерного материала. При выходе из пропиточной ванны волокна соединяются и пропускаются через фильфу, формирующую пруток или трубу. Этот метод обеспечивает максимальное наполнение композита волокнами (до 85 %), их однородное распределение в поперечном сечении и непрерывность процесса.  [c.872]


Смотреть страницы где упоминается термин Прокатка расплава : [c.30]    [c.40]    [c.45]    [c.328]    [c.271]    [c.267]    [c.48]    [c.56]    [c.140]    [c.294]    [c.545]    [c.48]    [c.233]    [c.172]   
Аморфные металлы (1987) -- [ c.30 , c.40 ]



ПОИСК



Прокатка



© 2025 Mash-xxl.info Реклама на сайте