Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аморфные сплавы получение

Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]


Повышенные прочностные характеристики данных материалов заметно снижаются при нагреве и низкотемпературном старений. На реологические свойства аморфных сплавов существенное влияние оказывают малейшие изменения структуры, связанные с химическим составом и условиями получения аморфных композиций. В настоящее время многое еще не ясно в вопросах природы атомных связей, реологических свойств и механизма разрушения данных материалов.  [c.37]

Рис, 177. Схема получения аморфных сплавов с помощью быстрого охлаждения из расплава а — разливка на диск 6 — разливка между дву.мя дисками 1 — индуктор 2 — расплав 3 — тигель 4 — диск 5 — лента аморфного материала  [c.372]

В работе [3] были исследованы сплавы Zn-Zr, полученные закалкой из газовой фазы. В области 20-70 % (ат.) Zr были получены аморфные сплавы. В области < 20 и > 75 % (ат.) Zr, закаленные сплавы имели ГПУ структуру с параметрами решетки, увеличивающимися с возрастанием концентрации Zr (параметр с изменяется линейно, параметр а не подчиняется закону Вегарда). Температура кристаллизации аморфных сплавов увеличивается от 247 до 557 °С с возрастанием концентрации Zr.  [c.438]

Целостное представление складывается потому, что авторы сумели в сжатой форме изложить и обсудить все вопросы научного и практического характера, связанные с данной проблемой, а именно методы получения и условия образования аморфных сплавов атомную и электронную структуру процессы структурной релаксации и кристаллизации физические, механические и химические свойства аморфных сплавов и возможные области их применения. Таким образом, в книге отражены служебные свойства аморфных сплавов и технология их получения, а также обсуждается одна из фундаментальных и далеко не решенных до конца задач физики конденсированного состояния — проблема однозначного физического описания неупорядоченных металлических систем.  [c.8]

В заключение отметим, что к настоящему времени в общих чертах уже созданы основы физических представлений о тех факторах, при помощи которых можно оптимизировать и регулировать в нужном направлении магнитные свойства аморфных сплавов. Однако каждый новый аморфный сплав того или иного типа и даже сплав известного состава, но полученный не в строго идентичных условиях может иметь свой норов , что требует всякий раз проводить тщательное исследование для создания правильной картины о его свойствах.  [c.18]

При изготовлении пленок из сплавов обычно используется одновременное напыление нескольких элементов. В основе метода лежит различие в упругости паров элементов, входящих в состав сплава. Однако регулировать состав получаемой пленки довольно трудно. Поскольку обычно температура Тх у сплавов сравнительно высока, то легко добиться, чтобы температура подложки была ниже Тх, что и делают, например, в случае получения сплава железа с 10% (ат.) германия, у которого 7 = 130 К- Все же для получения аморфных сплавов этот метод можно применять лишь ограниченно. В частности, при изготовлении аморфных сплавов, состоящих из элементов с сильно различающейся упругостью паров, необходимо тщательно регулировать скорость напыления разных элементов. При этом нужно поддерживать постоянство количественных соотношений между элементами, осаждаемыми на подложку. Здесь в последнее время начинают применяться методы машинного контроля. Скорость напыления определяется сортом элементов, уровнем вакуума, структурой подложки и обычно составляет 0,5— 1,0 нм/с.  [c.31]


Таблица 2.3. Получение аморфных сплавов методами металлизации Таблица 2.3. Получение аморфных сплавов методами металлизации
Что касается определения парциальных структурных факторов с применением комбинаций различных излучений, то можно указать на работу 1[18], где на аморфном сплаве Pd—19,87о (ат.) Si было опробовано сочетание рентгеновского, электронного и нейтронного рассеяния. Полученные парциальные интерференционные функции и парные функции распределения приведены на рис. 3.12,  [c.71]

Наибольший интерес представляют экспериментальные данные исследования электронной структуры аморфных сплавов, полученные с использованием спектроскопических методов. С помощью метода РФЭ было обнаружено, что плотность состояний на уровне Ферми N Er) в аморфных сплавах Pd — Си — Si и Pd — Si значительно ниже, чем N(Er) кристаллического Pd и что их РФС-спектры значительно отличаются, особенно в области Ег. Эти закономерности электронной структуры стали основой для формулирования известного критерия стабилизации аморфной структуры Нагеля-Тауца. Однако расчеты ПС электронов на основе моделей СПУ, как для чистых металлов, так и для сплавов (Fe — В) показали, что энергия Ферми Ef попадает в область максимума ПС. Детальный анализ парциальных плотностей состояний, отвечающих различным зонам, позволяет, по мнению авторов, сделать вывод, что данные спектроскопии (сплав Pd—Si) также не подтверждают электронный критерий стабилизации аморфной структуры, подразумевающий положение псевдощели в области Ег. Спектроскопические данные позволяют также предположить, что по крайней мере в сплавах Pd — Si перенос электронов от атомов Si к атомам Pd отсутствует, происходит перенос электронов только внутри атомов Pd.  [c.19]

Обычно для получения аморфных пленок этим методом используются соединения типа Si , Sis , BN, ВС, а главным компонентом газовой атмосферы служит галогенид (например, Si l4). Важными условиями влияющими на качество получаемых пленок, являются состав сырья, концентрации, давление и расход газа, температура и материал подложки. Примеров аморфных сплавов, полученных таким образом, пока нет, но думается, что данный метод можно использовать для аморфизации металлов с высокой точкой плавления.  [c.38]

До сих пор мы обсуждали только те аморфные сплавы, которые могут быть использованы как магнитномягкие материалы. Однако, с точки зрения других функциональных магнитных свойств аморфные сплавы имеют, вероятно, также очень большие возможности, которые, правда, подробно пока не изучены. Упомянутое выше применение аморфных сплавов, полученных напылением, для производства лент магнитной записи указывает на одно из направлений практического использования особенностей этих материалов. Другими перспективными направлениями может служить использование быстрозакаленных аморфных лент в качестве магнитострикци-онных вибраторов и элементов в линиях задержки, а также в качестве инварных материалов, что и будет кратко рассмотрено ниже.  [c.174]

Исследования сверхпроводимости аморфных сплавов, полученных закалкой из жидкого состояния, начались уже после выхода в свет работы Коллвера и Хэммонда. В настоящее время для закалки жидкости используют следующие методы молота и н аковальни, позволящий получать дискообразные образцы, выстреливания капли, закалки на диске, позволяющий получать ленточные образцы достаточной длины, и некоторые другие.  [c.211]

Рнс. 7.2. Завнснмость Tt аморфных сплавов, полученных криозакалкой, закалкой на жидкого состояния и ионной имплантацией, от электронной концентрации е/а (стрелками показаны составы сплавов, полученных закалкой от жидкого состояния)  [c.214]

Таблица 7.2. Критическая температура Тс, энергетическаи щель До и коэффициент энергетической щели сверхпроводящих аморфных сплавов, полученных криозакалкой и методом распыления [37] Таблица 7.2. <a href="/info/838">Критическая температура</a> Тс, энергетическаи щель До и коэффициент <a href="/info/379979">энергетической щели сверхпроводящих</a> <a href="/info/6788">аморфных сплавов</a>, полученных криозакалкой и методом распыления [37]

МПа). Высокая твердость определяет их великолепную износостойкость. Правда пластичность аморфных металлов низка, но выше, чем у обычного стекла. Их можно, например, прокатывать при комнатной температуре. Другое важнейшее преимущество - их исключительно высокая коррозионная стойкость. Во многих весьма агрессивных средах (морской воде, кислотах) они не корродируют вообще. Аморфные сплавы на основе ферромагнитных металлов (железа, никеля) также ферромагнитны, электросопротивление их гораздо выше, чем кристаллических (обычно в 2-3 раза). Получение аморфной стр5лпуры в принципе возможно для всех металлов. Наиболее легко аморфное состояние достигается в сплавах А1, РЬ, Зп, Сп и др. Для ползп1ения металлических стекол на базе N1, Со, Ре, Мп, Сг к ним добавляют неметаллы или полуметаллические элементы С, Р, 31, В, Аз, 3 и др.  [c.45]

Выбор метода получения аморфных материалов определяется спецификой аморфизируемого вещества. Так, расплавленные Ge и Si обладают металлическими свойствами, и поэтому для получения аморфных полупроводников Ge и Si используют первую группу методов [59]. Для аморфизации Те и особенно Se вполне достаточно быстрого охлаждения в обычных закалочных средах. Аморфизация металлических сплавов требует скоростей до 1 с [60, 61]. Аморфные твердые тела, полученные сверхбыстрой закалкой из жидкого состояния, метастабильны. Они, как считается, обладают большей стойкостью к кристаллизации, чем аморфные вещества, полученные напылением.  [c.274]

Специалисты полагают, что удешевление фотоэлементов за счет перехода к аморфному кремнию вместо монокристалличе-ского сделает метод прямого преобразования солнечной энергии в электрическую конкурентноспособным по сравнению с другими методами получения энергии. Подробное описание солнечных батарей на аморфном кремнии дано в i[68]. В настоящее время наиболее перспективным материалом считается определенным образом приготовленный аморфный сплав кремния с водородом, фотогаль-ванический эффект в котором был открыт в 1974 г. К 1978 г. КПД солнечных батарей на этом материале достиг 6%. Эта величина в 3—4 раза меньше достигнутой на кристаллических Si и GaAs, однако в последних максимальные значения КПД были получены через 20 лет после открытия соответствующего эффекта. Это подтверждает несомненную перспективность аморфных материалов для использования в солнечных батареях. Для успешной реализации этих батарей необходимо выполнение ряда условий, таких, как большой коэффициент оптического поглощения (в широкой области спектра), эффективный сбор носителей электричества на обеих сторонах полупроводникового материала (пленки), достаточно большой внутренний потенциал, определяющий ЭДС элемента. Эти условия определяются оптическими и электрическими свойствами аморфных полупроводников и в конечном счете энергетическим спектром электронов. Поэтому далее мы перечислим некоторые характерные свойства этих материалов, достаточно тесно связанные с картиной распределения состояний электронов по энергетическим зонам.  [c.284]

Очень большой интерес для специальных областей новой техники представляют сплавы некристаллического строения, не имеющие границ зерен, Такие сплавы изготовляют различными методами с помощью закалки из жидкого состояния со скоростью охлаждения 10 —Ю К/с. Полученная продукция (фольга,. лента и проволока) имеет ограниченные размеры — до 0,1 мм, но обладает уникальными свойствами, недостижимыми другими методами. Это прежде всего — возможность получения высоколегированных сплавов благодаря существенно более высокой растворимости легирующего элемента в жидком состоянии по сравнению с растворимостью в твердом. У аморфных сплавов нет и не может быть межкристаллитноп тепловой или коррозионной хрупкости. Число операций технологического процесса изготовления фольги и проволоки резко сокращается, трудозатраты уменьщаются технология в основном безотходная.  [c.187]

Во втором издании (первое - в 1986 г.) рассмотрены основные положения теории коррозии металлов и сплавов. Проанализировано влияние условий эксплуатации на коррозию конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Приведены свойства важнейших конструкционых материалов, в том числе данные по жаропрочным и жаростойким конструкционным сплавам. Указаны способы повышения коррозионной стойкости поверхностное легирование, создание металлокерамических сплавов, получение сплавов в аморфном состоянии, современные методы борьбы с газовой коррозией.  [c.160]

Рис. 2. Методы получения металлических аморфных магнетиков. (I — М( тод спиннингованияй i — расплав 2 — вращающийся металлический диск s — аморфная лента, б — Метод экстракции расплава 1 — ванна с расплавом г — вращающийся металлический диск 3 — вспомогательный диыс для очистки поверхности диска г 4 — аморфный сплав. Рис. 2. <a href="/info/280387">Методы получения металлических</a> <a href="/info/387172">аморфных магнетиков</a>. (I — М( тод спиннингованияй i — расплав 2 — вращающийся металлический диск s — аморфная лента, б — Метод экстракции расплава 1 — ванна с расплавом г — вращающийся металлический диск 3 — вспомогательный диыс для <a href="/info/183684">очистки поверхности</a> диска г 4 — аморфный сплав.
По этому методу нанокристаллическая структура создается в аморфном сплаве путем его кристаллизации. Спиннингование, т. е. получение тонких лент аморфных металлических сплавов с Помощью быстрого (со скоростью > 10 К/с) охлаждения расплава на поверхности вращающегося диска или барабана, отработано достаточно хорошо. Далее аморфная лента отжигается при Контролируемой температуре для кристаллизации. В целях со-  [c.53]


Магнитные материалы. На рис. 3.19 — 3.21 приведены данные, иллюстрирующие влияние размера кристаллитов на магнитные свойства материалов различных типов. В последние годы благодаря изучению свойств наноматериалов, полученных контролируемой кристаллизацией из аморфного состояния, японскими учеными был открыт новый класс магнитомягких материалов с высоким уровнем статических и динамических магнитных свойств по сравнению с аналогичными по назначению кристаллическими и аморфными сплавами. Это сплавы на основе Ре —81 —В с небольшими добавками N6, Си, 2г и некоторых других переходных металлов (например, Р1пете1 в Германии сплавы этого типа называются Витроперм ). После закалки из расплава эти сплавы аморфны, а оптимальные параметры достигаются после частичной кристаллизации при температуре 530 —550 °С, когда выделяется упорядоченная нанокристаллическая фаза Ре —81 (18 — 20) % с размером частиц около 10 нм. Объемная доля наночастиц в аморфной матрице составляет 60 — 80 %. Сплавы обладают низкой коэрцитивной силой (5— 10 А/м) и высокой начальной магнитной проницаемостью при обычных и высоких частотах при малых потерях (200 кВт/м ) на перемагничивание, что обеспечивает их широкое применение в электротехнике и электронике в качестве трансформаторных сердечников, магнитных усилителей и импульсных источников питания, а также в технике магнитной записи и воспроизведения и т.д., обеспечивая значительную миниатюризацию этих устройств и стабильную работу в широком диапазоне частот и температур. Мировой выпуск сплавов оценивается на уровне 1000 т в год [39].  [c.162]

Аморфные металлические сплавы или металлические стекла (МС) являются новым перспективным материалом. По химическому составу они состоят из металлов и элементов аморфизаторов, в качестве которых используют бор, углерод, кремний, азот и другие в количестве до 30 %, Аморфное состояние сплава характеризуется отсутствием дальнего порядка в расположении атомов упаковки. Такое состояние материала достигается сверхбыстрым его охлаждением из газообразного, жидкого или ионизированного состояния. Существуют различные методы получения аморфных сплавов.  [c.581]

Вторая глава книги посвящена фактически двум вопросам — описанию основных методов получения аморфных металлов и обсуждению роли различных факторов в образовании аморфной структуры при закалке из жидкого состояния. Методы охлаждения металлов из газовой фазы, как и методы электролитического осаждения, описаны весьма сжато, а основное внимание уделено методам закалки из жидкости, т. е. методам, которые позволяют получать аморфные металлы в промышленных масштабах (в виде леиты, проволоки, порошка). Особое внимание следует обратить на метод получения аморфной проволоки диаметром до 200 мкм путем охлаждения струи расплавленного металла в жидкости, удерживаемой центробежной силой на внутренней поверхности вращающегося барабана. Получение проволоки такого диаметра с прочностью и пластичностью, превышающей эти показатели для лучших сортов стальной проволоки, — одни из впечатляющих успехов рлзвития технологии получения аморфных, сплавов за последние годы.  [c.11]

Отметим также другие методы получения изделий из аморфных сплавов, которые ие нашли отражения в книге. Чтобы избежать операций штамповки (вырубки) при изготовлении деталей сложной формы (например, зубчатой — для статоров и роторов двигателей) применяют охлаждающий диск, состоящий из участков с высокой и низкой теплопроводностью (Либерманн, 1981 г.). Получаемая на таком диске лента резко неоднородна по хрупкости, что позволяет легко отделить пластичные аморфные участки заданной формы, пригодные для непосредственного использования в изделиях. Другой интересный способ — это получение изогнутых леит вместо прямых, чтобы избежать деформации при навивке магнитных лент в тороид, приводящей к деградации гистерезисных магнитных свойств. Заметного улучшения магнитных свойств в ряде случаев можно добиться с помощью закалки расплава в магнитном поле (сплавы с высокой  [c.11]

Известно, что традиционный метод рентгеиоструктурного анализа аморфных тел и метод описания их атомного строения с помощью функции радиального распределения (ФРР) или парной корреляционной функции позволяют получать информацию только о структуре, усредненной по большому объему. Поэтому важное значение для расшифровки деталей строения аморфных сплавов приобретают высокоразрешающие методы структурного анализа. Эти методы и ре- зультаты, полученные с их помощью, подробно описаны в гл. 3.  [c.13]

Наиболее важные выводы, которые следуют из данных, полученных на основе разделения парциальных интерференционных функций (метод изотопного замещения в нейтронной дифракции и рассеяния импульсных нейтронов, методы, основанные на комбинации различных типов излучения) и на основе высокоразрешающих методов (EXAFS, EDXD, рассеяние импульсных нейтронов в области малых длин волн), сводятся к следующему. Как для аморфных сплавов типа металл—металлоид, так и типа металл—металл характерны ближний композиционный порядок в расположении атомов, хотя для последних, где связь. преимущественно металлического типа, он выражен более слабо. Выяснено, что в сплавах типа металл—металлоид соседние металлоидные атомы не могут находиться в позициях, когда они непосредственно примыкают друг к другу, как это и предполагается моделью Полка. Однако концентрационная зависимость параметров ФРР (как и ряда свойств междуатомного расстояния, плотности упаковки) не может быть понята в рамках этой модели. Эти закономерности могут быть лучше увязаны в рамках модели определенной локальной координации атомов.  [c.14]

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобш,его внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены свер хвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились в реальность.  [c.26]

Рис. 3.10. Структурный фактор рассеяния нейтронов в быстрозакаленном аморфном сплаве us7Zr43, полученный методом замены изотопов Си, e u и N u [12] Рис. 3.10. <a href="/info/16562">Структурный фактор</a> <a href="/info/379362">рассеяния нейтронов</a> в быстрозакаленном <a href="/info/6788">аморфном сплаве</a> us7Zr43, <a href="/info/473555">полученный методом</a> замены изотопов Си, e u и N u [12]

Рис. 3.11. Парные корреляции Си—Си (/), Си—Zr (2) и Zr—Zr (3) в аморфном сплаве us7Zr43, полученные по данным, представленным на рис. 3.10 [12] Рис. 3.11. Парные корреляции Си—Си (/), Си—Zr (2) и Zr—Zr (3) в <a href="/info/6788">аморфном сплаве</a> us7Zr43, полученные по данным, представленным на рис. 3.10 [12]
На рис. 3.17 Приведены полученные в работе 38] результаты измерений SBT Q)= S (Q)/ Nm для нулевого аморфного сплава Ni26Tl74. Если бы атомы N1 и Т смешивались абсолютно беспорядочно, то Sbt Q) равнялась бы единице, однако на рис. 3.17 до  [c.76]

Рис. 3.19. Функция распределения Овт(г) аморфного сплава u4oTi6o, полученная по данным дифракции нейтронов, (а) и парные корреляции Ti—Ti, Си—Ti, Си—Си в кристаллах химического соединения uTi (б) [38] Рис. 3.19. <a href="/info/20978">Функция распределения</a> Овт(г) <a href="/info/6788">аморфного сплава</a> u4oTi6o, полученная по данным <a href="/info/132144">дифракции нейтронов</a>, (а) и парные корреляции Ti—Ti, Си—Ti, Си—Си в кристаллах химического соединения uTi (б) [38]
Таблица 3.4. Параметры структуры аморфного сплава Сиз2гг определенные методом ТСРП [431 и параметры структуры аморфного сплава u5jZr43. полученные нейтронной дифракцией с использованием изотопного замещения [12] Таблица 3.4. Параметры <a href="/info/166597">структуры аморфного сплава</a> Сиз2гг <a href="/info/335321">определенные методом</a> ТСРП [431 и параметры <a href="/info/166597">структуры аморфного сплава</a> u5jZr43. полученные <a href="/info/132144">нейтронной дифракцией</a> с использованием изотопного замещения [12]
Рис. 3.22. Корреляции u - u (/) и u- Zr (2), полученные разделением ТСРП края полосы поглощения меди в аморфном сплаве ujZrj по уравнению (3.25) с оптимизацией Рис. 3.22. Корреляции u - u (/) и u- Zr (2), полученные разделением ТСРП края <a href="/info/191861">полосы поглощения</a> меди в <a href="/info/6788">аморфном сплаве</a> ujZrj по уравнению (3.25) с оптимизацией
Обычно считают, что при фазовом расслоении действуют два механизма спинодальный распад и зарождение и рост зародышей. Однако Чоу и Тэрнбалл на основании проверки соотношения Порода методом малоуглового рентгеновского рассеяния -и анализа временных колебаний электронной плотности полагают, что разделение фаз происходит только путем спинодального распада. На рис. 3.52 показаны зависимости параметра Порода iQ3/ (Q) и колебаний электронной плотности от времени отжига аморфного сплава Pd74Au8Sii8 при 392°С, полученные Чоу и Тернбаллом  [c.102]

Аналогично, в работе [67] указывается, что в полученной напылением в аргонной атмосфере пленке аморфного сплава Gd—Со существует анизотропия колебаний химического состава, а также анизотропия, связанная с зарождением и ростом пор. Поэтому уже в пределах субмикрообластей структура сильно анизотропна.  [c.105]


Смотреть страницы где упоминается термин Аморфные сплавы получение : [c.137]    [c.191]    [c.211]    [c.119]    [c.4]    [c.198]    [c.372]    [c.55]    [c.35]    [c.37]    [c.78]    [c.80]    [c.95]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.380 ]



ПОИСК



Аморфное юло

Сплав аморфные

Сплавы аморфные - Назначение, свойства 306 - Область применения 306, 307 - Способ получения: закалкой 307, 308 осаждением



© 2025 Mash-xxl.info Реклама на сайте