Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки цилиндрические — Расчет устойчивость

Для расчета конструкций ракет задачи устойчивости цилиндрических оболочек имеют наибольшее значение. С другой стороны, на примере исследования устойчивости цилиндрических оболочек можно проследить все основные особенности задач устойчивости тонких упругих оболочек. Поэтому мы ограничимся изложением основ теории устойчивости упругих оболочек применительно к задачам устойчивости круговых цилиндрических оболочек.  [c.216]


Параметрические колебания трехслойной цилиндрической оболочки. Рассмотрим задачу расчета начального участка спектра областей динамической неустойчивости шарнирно опертой трехслойной пологой цилиндрической оболочки средней толщины. Для кинематически неоднородной модели (2.34) соответствующая система уравнений динамической устойчивости может быть получена непосредственно из системы уравнений (2.101), если учесть замечание 2.3.2.1. Предполагая исходное НДС оболочки однородным, для случая осевой динамической нагрузки получаем  [c.142]

Вторая часть посвящена уточненной теории ортотропных слоистых цилиндрических оболочек, учитывающей сдвиг между слоями, и ее приложению для решения конкретных задач. Исследована осесимметричная деформация цилиндрической оболочки при различных способах закрепления ее краев, рассмотрены вопросы термоупругости с учетом зависимости механических характеристик от температуры, а также прочность оболочек при локальном нагружении, устойчивость и колебания. Приводятся рекомендации по расчету и проекти- рованию оболочек из армированных материалов. Основные теоретические результаты подтверждаются экспериментально и иллюстрируются численными примерами.  [c.2]

Формы потери устойчивости 501 Оболочки цилиндрические длинные — Общее решение и основные случаи расчета 481—483 — Понятие 480 — Устойчивость при- действии осевых сил 502 — Устойчивость при изгибе 504, 505 — Устойчивость при кручении 503  [c.691]

Расчет цилиндрической оболочки (стенкн барабана) на устойчивость. В ряде случаев необходимо провести расчет цилиндрической оболочки барабана на устойчивость.  [c.100]

Под задачей приведения мы понимаем задачу об определении упругих параметров сплошной оболочки, эквивалентной в определенном смысле цилиндрической решетке, имеющей те же размеры и также загруженной. Решение задачи приведения имеет важное значение при расчете цилиндрической решетки на устойчивость.  [c.217]

Несмотря на широкое применение таких конструкций, некоторые особенности их работы до настоящего времени освещены недостаточно. Прежде всего это относится к так называемому эффекту эксцентричности расположения ребер относительно срединной поверхности обшивки, которым, как правило, пренебрегаю г. Исследованию этого эффекта и посвящена первая часть книги, в которой разработан прикладной метод расчета эксцентрично подкрепленных цилиндрических оболочек и пластин на устойчивость и колебания. Рассмотрены задачи устойчивости подкрепленной цилиндрической оболочки при осевом сжатии (осесимметричное и несимметричное выпучивание), внешнем радиальном давлении и их совместном действии, а также задача о свободных осесимметричных и несимметричных колебаниях.  [c.3]


Рис. 20.11. Схема и графики коэффициента к для расчета устойчивости короткой цилиндрической оболочки при осевом сжатии по формуле (20.49) Рис. 20.11. Схема и графики коэффициента к для <a href="/info/24069">расчета устойчивости</a> короткой <a href="/info/7003">цилиндрической оболочки</a> при <a href="/info/177623">осевом сжатии</a> по формуле (20.49)
Прикладной метод расчета устойчивости цилиндрических оболочек, подкрепленных кольцами жесткости при равномерном всестороннем сжатии. Из двух приводимых ниже формул для использования принимается результат, дающий наибольший запас несущей способности Р  [c.443]

На рис. 16.3 приведены результаты расчета по теории Ильюшина (кривая 1), теории устойчивости, построенной на основе теории течения с изотропным упрочнением (кривая 2) и модифицированной теории (кривая 3) для сжатых стальных цилиндрических оболочек ( = 2-10 МПа, ат = = 390 МПа). Экспериментальные результаты (отмечены кружочками) лучше подтверждают теорию устойчивости Ильюшина, построенную на основе деформационной теории. Дело в том, что до-критический сложный процесс по траекториям малой кривизны в момент бифуркации имеет бесконечно малое продолжение без излома траектории в направлении касательной к траектории деформации. Следовательно, теория течения с изотропным упрочнением не описывает сложный процесс выпучивания в момент бифуркации. Аналогичное явление наблюдается при использовании теории пластичности для траекторий средних кривизн. Если используются теория течения и теория средних кривизн, для вычисления интегралов Nm, Рт следует применять соотношения (16.45), (16.46) при со = 0 и со = (й соответственно.  [c.347]

На рис. 16.7, 16.8, 16.9 приведены результаты расчетов по определению интенсивности напряжений сг в момент чисто пластической бифуркации для цилиндрической оболочки из сплава В95 по различным теориям при сжатии, кручении и сжатии с кручением. Кривые 1 отвечают модифицированной теории, 2 — теории устойчиво-  [c.355]

Таким образом, в результате анализа устойчивости в большом устанавливается интервал значений нагрузок, внутри которого, в зависимости от величины возмущений, возможен переход к новому состоянию, т. е. потеря устойчивости. При практических расчетах по этому критерию не остается ничего иного, как ориентироваться на нижнюю границу интервала нагрузок, в частности, для цилиндрической и сферической оболочек—на величину Эта величина носит название нижнего критического усилия.  [c.143]

На этом вопросе следует остановиться подробнее, так как задача устойчивости конструкций, работающих за пределами упругости, находится в настоящее время в столь же неподготовленном для практических расчетов состояний, как и задачи об устойчивости сферической и цилиндрической оболочек.  [c.148]

Расчет на устойчивость цилиндрической оболочки при сжимающих осевых усилиях, существенно превосходящих по абсолютной величине окружные сжимающие усилия, рассмотрен в следующем параграфе.  [c.257]

Полубезмоментной теорией можно пользоваться при расчете на устойчивость произвольно нагруженной цилиндрической оболочки. Однако эта теория наиболее эффективна при расчете на устойчивость цилиндрической оболочки при осесимметричном гидростатическом давлении. Рассмотрим эту задачу детальнее.  [c.275]

Это основной вариант полубезмоментной теории, когда упругие свойства ортотропной цилиндрической оболочки описываются двумя характеристиками жесткостью оболочки на растяжение-сжатие в осевом направлении и изгибной жесткостью в окружном направлении Dсрединной поверхности, для решения задач устойчивости можно воспользоваться уточненным вариантом полубезмоментной теории, в котором учитываются деформации сдвига в срединной поверхности оболочки. В этом варианте полубезмоментной теории упругие свойства ортотропной цилиндрической оболочки вместо соотношений (7.1)  [c.277]


Замула Г. Н. Расчет устойчивости круговых цилиндрических оболочек в условиях ползучести. — Ученые зап. Центр, аэро-гидродинамич. ин-та, 1971, 2, № 6, с. 87—92.  [c.98]

Куршин Л. М., Щербаков В. Т. Расчет устойчивости сжатых цилиндрических оболочек при ползучести. — В кн. Тр. VIII Всесоюз. конф. по теории оболочек и пластин (Ростов н/Д,  [c.99]

В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]

На рис. 23.4 приведены результаты экспериментов по данным обзора Сейда [23.14]. По оси абсцисс отложено отношение меньшего радиуса кривизны pi = Го/ os y к толщине оболочки. Расхождение с расчетом немного меньше, чем у цилиндрических оболочек. Для оценки устойчивости оболочек можно использовать эмпирические кривые, полученные для цилиндрических оболочек, вводя в них вместо радиуса цилиндра радиус рь  [c.283]

На рис. 6.12 построены области неустойчивости для бесконечной цилиндрической оболочки с параметрами r//i= 100, 125,150 (кривые 1, 2, 3). Для времени t=0,48-10 2 заштрихованы области динамической устойчивости, определяемые условием p i (т) >pn2(t) для rlh=lOO (знаком (4-) указана область динамической устойчивости, знаком (—) область, где движение неустойчиво). Здесь же для отношения г//г=125 построены области для оболочки со свободными краями (кольцо — посредине оболочки). Цифрами 4, 5, 6 обозначены кривые для оболочек безразмерной длины =1, 2, 3 il=LI2r). Как видно, здесь длина оказывает незначительное влияние на вид областей устойчивости. На рис. 6.13 для г//г=125 построены области устойчивости для защемленной оболочки. Кривая 2 характеризует область устойчивости для бесконечной оболочки, кривые 7, 8, 9 — для защемленных оболочек безразмерной длины 1=1, 2, 3. В данном случае длина оболочки играет существенную роль при построении областей динамической устойчивости. С уменьшением длины эти области уменьшаются, что связано с резким увеличением жесткости системы. Для времени т = 0,48-10 2 для g = 2 соответствующие области заштрихованы. Для =1 во всем диапазоне чисел п Рп1 (т) >Рп2(т), т. е. движение оболочки при заданном импульсе устойчиво. При расчетах принято = 6,6-10 Н/м с = = 5 10 м/с- Do= 7 м/с /=2,81 10- м (кольцо прямоугольного сечения единичной ширины высотой 0,015 м) R = 0,75 м ц = 0,3.  [c.217]

В настоящей работе основное внимание удейяется вопросам расчета устойчивости элементов тонкостенных конструкций (стержней, пластин и оболочек) из металла, обладающего при высоких температурах свойством неограниченной ползучести. При растяжении образцов из такого материала при высоких температурах скорости деформаций ползучести убывают лищь на начальном участке испытаний, затем обычно следует фаза установившейся скорости ползучести на заключительном участке, предшествующем разрушению, мбжет начаться возрастание скорости. Для системы из такого материала под действием нагрузки в условиях ползучести может существовать такое конечное время, когда из-за больших деформаций ползучести наступит недопустимое изменение формы конструкций. Так, у сжатого постоянной си-лой стержня в условиях ползучести может произойти быстрое возрастание прогибов сжатая цилиндрическая оболочка может выпучиться под действием внешнего давления оболочка может сплющиться.  [c.254]

Прежде чем Х)станавливаться на некоторых наших решениях задач устойчивости цилиндрической оболочки при сжатии и при совместном действии сжатия и внутреннего давления, рассмотрим некоторые особенности расчета устойчивости упругой оболочки. Чтобы правильно понять поведение цилиндрической оболочки под действием сжимающей нагрузки, необходимо учитывать в исходной ее форме отклонения от цилиндрической поверхности. В связи с этим необходимо определять црогибы оболочки с начальными неправильностями с  [c.279]

В заключении второй части книги рассматриваются малые прогибы тонких упругих оболочек, излагается линеаризированная теория устойчивости оболочек. Приведенные здесь общие уравнения устойчивости цилиндрических оболочек в перемещениях, вызванных потерей устойчивости, известны как уравнения Тимошенко. Дается решение этих уравнений для случая внешнего поперечного давления и равномерного продольного сжатия. Последний случай особенно интересен. Автором впервые изучена теоретически неосесимметрвганая форма потери устойчивости и показано, что в этом случае при выпучивании по коротким продольным волнам выражение для продольной критической нагрузки совпадает с формулой для критической нагрузки при симметричном волнообразовании. Здесь описан также метод расчета на устойчивость оболочек за пределом упругости. Наконец, излагается общее решение уравнений малых осесимметричных деформаций сферической оболочки и их щ)имвнение к различным случаям нагружения.  [c.7]


Метод гармонического анализа в приложении к исследованию точности используют только для абсолютно интегрируемых функций. Он не учитывает начальных условий, а поэтому применим только для задач с нулевыми начальными условиями. Некоторые искусственные приемы позволяют обойти эти ограничения, но при этом расчеты еще больше усложняются. Метод в ггриближспном виде применяется для расчета устойчизости цилиндрических оболочек в пределах упругости [4]. В общем случае расчет устойчивости тонкостенных оболочек, работающих под наружным давлением и имеющих отклонение формы, представляет собой трудную задачу. Эта задача осложняется тем, что в процессе выпучивания число и размеры впадин переменны. Поэтому диаграммы равновесных форм представляют собой огибающую некоторой серии кривых, отвечающих тем или иным числам волн.  [c.33]

Приведенная в книге теория полубезмоментных трехслойныч цилиндрических оболочек дополняет результаты по расчету устойчивости пологих цилиндрических оболочек.  [c.4]

Расчет устойчивости эксцентрично подкрепленных цилиндрических оболочек основан на применении определенных деформационных гипотез, которые позволили вести нсследованне в общем виде, учитывая различные возможные граничные условия опнрания конструкции. Результаты расчета конкретных оболочек представлеяы в виде графиков и таблиц.  [c.2]

Для многослойных конструкций, состоящих из слоев различной жесткости, учитываются их специфические особенности деформации поперечного сдвига и надавливания волокон в маложестких слоях (заполнителях). При этом слоистая оболочка заменяется эквивалентной однослойной конструкцией с некоторыми приведенными жесткостными характеристиками. На основе общих зависимостей рассмотрен ряд коикретиых задач устойчивости слоистых цилиндрических, сферических н конических оболочек, цилиндрических панелей, пластин. Для двухслойных и трехслойных конструкций приведены графики, которые могут быть непосредственно использованы в практических расчетах.  [c.2]

В третьей части рассмотрены задачи устойчивости многослойных конструкций, состоящих из слоев различной жесткости. Для их расчета предлагается сравнительно простой метод, позволяющий легко учитывать деформации поперечного сдвига и надавливания волокон в маложестких слоях. На основе общих зависимостей рассмотрены конкретные задачи устойчивости слоистых цилиндрических, сферических и конических оболочек, цилиндрических панелей, пластин задача устойчивости слоистых конструкций за пределом пропорциональности. Дано также решение нескольких, задач поперечного изгиба многослойных оболочек и пластин.  [c.4]

Формы потери устойчивости 466 Оболочки цилиндрические длинные — Общее решеиие и основные случаи расчета 445 — 447 — Понятие 445 — Устойчивость при действии осевых сил 465, 466 — Устойчивость прн изгибе 467, 468 — Устойчивость при кручеиии 466, 467  [c.635]

Порядок практического выполнения расчетов устойчивости цилиндрической оболочки, подкрепленной кольцами жесткости при всестороннем равномерном сзкатии.  [c.444]

Устойчивость конических оболочек под равномерным радиальным наружным давлением. Конические оболочки часто рассчитывают по формулам для цилиндрических оболочек с радиусом условного цилиндра, равным наибольшему радиусу кривизны поверхности конуса. Теория и прикладные методы расчета устойчивости конических оболочек приведены, например, в книге [97]. Однако для использования в проектах методики, приведенной в этой книге, необходимо иметь данные экопериментальиой проверки.  [c.445]

Седьмая глава посвящена расчету тонких оболочек на основе гипотез Кирхгофа — Лява. В ней рассмотрены моментная, полумоментная и безмоментная теории расчета на прочность, устойчивость и колебания. Приведены расчеты пологих оболочек на действие нагрузки и температуры. Особое внимание уделено цилиндрическим оболочкам и оболочкам вращения.  [c.7]

Тонкостенная цилиндрическая круговая оболочка сжата осевой силой Р=5200 кГ. Определить верхнее и нижнее значения критической силы и величину коэффициента запаса устойчивости, с которыми работает оболочка при данной нагрузке. Во сколько раз следует увеличить коэффициент запаса, если расчет вести по верхнему значению критических напряжений Дано =0,7-10 кГ1см , t=l мм, 7 =200 мм.  [c.218]

Тонкостенные трубы часто используют в качестве элементов ферм. Теоретический анализ устойчивости сжатых в осевом направлении цилиндрических оболочек из композиционных материалов приводит хотя и к завышенным, но в целом более удовлетворительным результатам, чем соответствующий расчет изотроп-  [c.124]

Первые шаги в области нелинейной устойчивости были весьма мпогообеш.аюш,ими. В частности, для цилиндрической и сферической оболочек нияшяя критическая нагрузка при первых же расчетах оказалась близко совпадающей с теми значениями предельных нагрузок, которые определяются из опыта. Это вначале дало повод думать, что в реальных условиях начальные несовершенства и случайные возмущения таковы, что переход к новым найденным формам равновесия практически реализуется уя е тогда, когда нагрузка достигает нижнего критического значения.  [c.144]

Более того, возможны случаи, когда пренебрежение начальными перемещениями, связанными с изгибом системы в докрити-ческом состоянии, приводит к недопустимо большим погрешностям определения критической нагрузки. Например, если в задаче устойчивости сжатой в осевом направлении тонкой цилиндрической оболочки с малыми начальными неправильностями формы (см. гл. 6) не учитывать начальное напряженно-деформированное состояние, вызванное докритическим изгибом оболочки, то можно получить качественно неверный результат. Но тонкостенные элементы правильно спроектированных силовых конструкций в докритическом состоянии обычно работают без заметных изгибов. Изгиб таких элементов — это чаще всего результат потери устойчивости, вызывающий резкий рост напряжений и перемещений в конструкции и приводящий к частичной или полной потере ее работоспособности. Для расчета на устойчивость таких тонкостенных элементов допущение о пренебрежении изменением начальной геометрии вполне оправдано.  [c.38]

Применение устойчивых численных методов решения этих систем на ЭВМ позволяет применять в расчетных схемах весьма большое число элементов. Имеется возможность с высокой точностью аппроксимировать элементы переменной толщины набором однотипных базисных элементов постоянной или линейно-переменной толиданы, например тороидальные и эллиптические оболочки могут быть представлены набором конических и цилиндрических оболочек и кольцевых пластин. Такой подход соответствует варианту метода конечных элементов, в котором в качестве функций для перемещений конечных элементов используются вместо полиномов известные аналитические решения теории оболочек и пластин, что позволяет выбирать более крупные элементы и снижает погрешность расчета конструкции.  [c.46]


Смотреть страницы где упоминается термин Оболочки цилиндрические — Расчет устойчивость : [c.551]    [c.351]    [c.551]    [c.445]    [c.230]    [c.257]    [c.258]    [c.7]    [c.273]    [c.308]    [c.207]    [c.99]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.206 , c.208 , c.209 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.206 , c.208 , c.209 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.206 , c.208 , c.209 ]



ПОИСК



528—530 — Расчеты цилиндрические

529 — Расчет цилиндрические — Расчет

Оболочка Расчет

Оболочка Устойчивость

Оболочка цилиндрическая

Оболочки цилиндрические длинные Общее решение и основные случаи расчета 481—483 — Понятие 480 Устойчивость при- действии осевых

Оболочки цилиндрические — Расчет

Расчет на устойчивость

Расчет потери устойчивости цилиндрической оболочки

Устойчивость цилиндрических

Устойчивость цилиндрических - оболочек



© 2025 Mash-xxl.info Реклама на сайте