Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр областей динамической неустойчивости

Параметрические колебания трехслойной цилиндрической оболочки. Рассмотрим задачу расчета начального участка спектра областей динамической неустойчивости шарнирно опертой трехслойной пологой цилиндрической оболочки средней толщины. Для кинематически неоднородной модели (2.34) соответствующая система уравнений динамической устойчивости может быть получена непосредственно из системы уравнений (2.101), если учесть замечание 2.3.2.1. Предполагая исходное НДС оболочки однородным, для случая осевой динамической нагрузки получаем  [c.142]


После подстановки ряда (3.40) в уравнение (3.39) и последующих стандартных преобразований задача определения спектра областей динамической неустойчивости оболочки сводится к задачам расчета точечных спектров собственных значений Для  [c.144]

Из сравнения операторов и следует, что в пространстве параметров возбуждающей параметрические колебания нагрузки, т. е. Ро, Рг и 0, спектр областей динамической неустойчивости оболочки распадается на две части, каждая из которых содержит счетное множество зон динамической неустойчивости (ЗДН), определяемых в результате решения соответствующих пар характеристических уравнений  [c.145]

Спектр областей динамической неустойчивости 146, 147 Статистический вес ИСЭ 22, 25 Стоимость проекта конструкции 179  [c.292]

В этой и других подобных задачах со сравнительно разреженным спектром взаимное влияние гасителей, настроенных на разные частоты, невелико. Это позволяет часто ограничиваться рассмотрением простейших расчетных моделей конструкций — в виде систем с одной степенью свободы. Применение ДГК при продольных колебаниях стержней снижает также возможность возникновения параметрического резонанса, так как вследствие увеличения демпфирования системы размеры областей динамической неустойчивости уменьшаются [44].  [c.162]

Очевидно, что объединение q областей динамической неустойчивости Яр(р=1,<7) и образует спектр областей динамической неустойчивости (СОДН) оболочки  [c.146]

Здесь 2 — продольная координата, 9 — вектор, проекции которого суть углы наклона и депланация сечения, N(t) — продольная сжимающая сила, Ао, А, В и С —матрицы, характеризующие геометрические свойства стержня, 8 — матрица сдвигов. Если не учитывать сдвиги, то соответствующее вырождение при 8- 0 приводит к уравнениям теории тонкостенных стержней открытого поперечного сечения В. 3. Вла-сов1а >. Учет сдвигов связан с появлением дополнительных форм и спектров высокочастотных колебаний и дополнительных областей динамической неустойчивости. В количественном отношении влиянии сдвигов проявляется в уменьшении частот свободных колебаний. Положение главной области динамической неустойчивости с учетом сдвигов практически не изменяется.  [c.22]

Характерным свойством открытой системы с большим числом (Л оо) независимых динамических переменных (г,р) является ее динамическая неустойчивость из-за перемешивания (экспоненциальной расходимости близких в начальный момент фазовых траекторий), так что любое начальное распределение функции плотности вероятностей в фазовом пространстве стремится к предельному равновесному распределению, то есть наиболее хаотичному состоянию с максимальной энтропией (в смысле Больцмана-Гиббса-Шенона). Турбулизацию движения жидкости или газа можно представить также как результат изменения топологии фазовых траекторий, приводящего к перестройке аттракторов и качественному изменению бифуркации) состояния движения. Корреляции скорости в любой точке потока ограничены малыми временными интервалами, зависящими от начальных условий, за пределами которых причинную связь между полем скоростей в различные моменты времени, в том числе корреляцию с предыдущим движением, установить невозможно. Все это подкрепляет представление о стохастическом характере пульсаций скорости в турбулентном потоке, которые возникают как результат потери устойчивости ламинарного движения гидродинамической системы при изменении внешних управляющих параметров (например, числа Ке). С этой точки зрения турбулентное движение является более хаотическим, чем ламинарное - турбулентность отождествляется с хаосом (или шумом). Отражением стохастической природы турбулентности служит плотное переплетение фазовых траекторий с различным асимптотическим поведением (топологией) и структурой окружающих их областей притяжения (аттракторов). Такое поведение траекторий в фазовом пространстве означает, что система обладает эргодичностью, то есть почти для всех реализаций случайного поля временные средние равны соответствующим статистическим средним, ее временные корреляционные функции быстро затухают, а частотные спектры непрерывны. Эргодическое свойство, по-видимому, является одной из характерных черт стационарного однородного мелкомасштабного турбулентного поля (см., например, Кампе де Ферье, 1962)).  [c.21]



Смотреть страницы где упоминается термин Спектр областей динамической неустойчивости : [c.273]   
Устойчивость и оптимизация оболочек из композитов (1988) -- [ c.146 , c.147 ]



ПОИСК



Неустойчивость

Неустойчивость динамическая

Области неустойчивост

Области неустойчивости

Область динамической неустойчивости

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте