Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа и мощность паровой машины

РАБОТА И МОЩНОСТЬ ПАРОВОЙ МАШИНЫ  [c.156]

Приводом называется система, включающая силовую установку, передаточные механизмы и приборы управления. В приводах погрузочно-разгрузочных машин в качестве силовых установок используют электродвигатели, двигатели внутреннего сгорания и реже паровые машины. Привод может быть групповым и индивидуальным. В первом случае группа исполнительных механизмов приводится в действие от одной силовой установки, передающей движение (мощность) на главный распределительный вал машины. Во втором случае каждый рабочий механизм снабжается силовой установкой. Групповой привод имеет существенный недостаток — низкое использование силовой установки по мощности в периоды неодновременной работы исполнительных механизмов.  [c.67]


Как уже отмечалось, вибрации сопутствуют работе всех машин и часто оказываются причиной, сдерживающей дальнейший прогресс в той или иной области техники. Так, например, дальнейшее увеличение быстроходности высокоскоростных роторных машин ограничено вибростойкостью ротора и подшипниковых опор, повышение мощности паровых и газовых турбин — вибрациями лопаток последних ступеней, создание мощных вертолетов — колебаниями рабочих лопастей, повышение точности металлорежущих станков — вибрациями режущего инструмента и станины, создание высокоточных и надежных систем автоматического управления — вибрациями ее отдельных элементов.  [c.15]

Во время работы машинного агрегата угловая скорость его коренного вала может изменяться в результате изменения внешних условий, создающих для него нагрузку, с чем приходится считаться, принимая меры, обеспечивающие устойчивую работу машинного агрегата. Например, нагрузка парового турбогенератора, питающего электрическую сеть, зависит от числа и мощности приемников энергии, чем и определяются величины сил сопротивления, приложенных к турбине.  [c.322]

Однако уже в середине XIX в. возникла потребность в тепловых двигателях других видов. Это объясняется невозможностью работы паровой машины на паре высоких начальных и низких конечных параметров, что обусловливает сравнительно невысокое значение ее термического к. п. д. Возвратно-поступательное движение поршня и кривошипного механизма затрудняет повышение скорости вращения, вследствие чего габариты машины и ее стоимость относительно велики, а единичная мощность мала.  [c.325]

Одной из естественных тенденций в развитии машин явилась тенденция к повышению их рабочих скоростей, мощностей и передаваемых сил. До Великой Октябрьской социалистической революции вопросы динамики машин и механизмов были развиты сравнительно мало. В основном изучалась динамика паровых машин, некоторые вопросы динамики поршневых двигателей внутреннего сгорания и теория регулирования неравномерности движения этих машин. Динамика технологических машин начала разрабатываться только после революции. Первые исследования по динамике технологических машин были посвящены сельскохозяйственным машинам. В основу их были положены труды акад. В. П. Горячкина. До 30-х годов нашего столетия работы по динамике машин и механизмов продолжали носить прикладной характер. Рассматривались отдельные задачи динамики применительно к авиадвигателям, сельскохозяйственным, текстильным, пищевым, горным и другим машинам. В основном рассматривались задачи кинетостатики, уравновешивания масс, подбора маховых масс и некоторые вопросы крутильных колебаний валов двигателей внутреннего сгорания. В период с 1930 по 1940 г. на основе развития теории структуры механизмов появляются работы более общего плана, в которых излагаются методы кинетостатического исследования как плоских, так и пространственных механизмов. Начинают развиваться методы динамического исследования зубчатых, кулачковых и других видов механизмов.  [c.29]


Паровые лебёдки, конструктивно близкие к приводным фрикционным лебёдкам, но имеющие ограниченное применение на судах и для обслуживания специальных работ (в частности, для обслуживания деррик-кранов и скреперных установок), снабжаются горизонтальными сдвоенными паровыми машинами однократного (простого) расширения с числом оборотов от 120 до 200 в минуту, с диаметром цилиндров 100—200 мм и ходом поршня 165—340 Л.И. Мощность машин обычно не превышает 35 л. с.  [c.871]

Первые синхронные генераторы, приводимые в действие паровыми машинами или двигателями внутреннего сгорания через ременную передачу, работали с малым числом оборотов окружная скорость ротора для таких машин составляла не более 15—25 м/с. С ростом мощности электрических генераторов повышалось требование равномерности вращения, что не обеспечивалось ни паровой машиной, ни двигателями внутреннего сгорания с их пульсирующим движением поршня и кривошипно-шатунным механизмом. В связи с этим в начале 90-х годов были разработаны специальные генераторы маховикового типа, в которых для уменьшения неравномерности хода была увеличена инерция вращающихся частей. В этих генераторах вращающиеся индукторы одновременно играли роль маховиков для первичного двигателя. Первичные поршневые двигатели накладывали определенные ограничения на конструкции синхронных генераторов их приходилось строить с большим числом полюсов, что, в свою очередь, увеличивало расход активных материалов и потери энергии в машине. Таким образом, хотя паровая машина к концу XIX в. достигла высокой степени совершенства, она не годилась для привода мощных электрических генераторов, так как не позволяла сконцентрировать большие мощности в одном агрегате и создать требуемые высокие скорости вращения. На смену паровым машинам пришли паровые турбины. Первоначально использовали сравнительно тихоходные турбины конструкции шведского инженера Г. П. Лаваля [35].  [c.81]

Паровые машины большой мощности требовали громоздких парокотельных агрегатов. Уже в последней четверти минувшего века им на смену приходят более компактные и удобные в эксплуатации двигатели внутреннего сгорания, в которых механическая работа образуется в результате химической энергии топлива, сгорающего в цилиндре двигателя. В 1889 г. на бельгийском заводе Серен была пущена воздуходувная машина, приводимая в действие газовым мотором мощностью 600 л.с. [1, с. 35]. В качестве топлива использовали колошниковый газ доменной печи. В последующие годы газовые воздуходувки благодаря их экономичности и удобству эксплуатации получили широкое распространение. Однако в первые десятилетия нашего века их заменили более производительными турбовоздуходувками, приводящимися в действие паровыми турбинами или электродвигателями.  [c.114]

Недостатками поршневых двигателей при применении их на электростанциях являются наличие кривошипно-шатунного механизма и маховиков, пониженная равномерность хода, неустойчивость параллельной работы электрических генераторов, невысокие единичные мощности. Конденсат паровых машин, загрязненный смазочным маслом, не может быть использован для питания котлов. В паровых машинах нельзя осуществить рабочего процесса с глубоким вакуумом.  [c.18]

Работа каждой паросиловой установки постоянно сопровождается дросселированием пара в той или иной форме. Оно происходит при движении пара через клапаны, задвижки и другие части трубопроводов. В этом случае дросселирование пара вызывает потерю давления и его стремятся по возможности уменьшить. К дросселированию пара прибегают для регулирования мощности паровых турбин и машин (дроссельное регулирование) или для искусственного снижения давления (редук-  [c.156]


Первая эпоха создания машин с ручным, конным, водяным и ветровым приводами длилась до XIX в., после чего, с изобретением паровой машины, наступила вторая эпоха, длившаяся менее столетия. Она совпала с бурным развитием постройки железных дорог, которое создало благоприятные условия для применения паровых экскаваторов мощностью до 1000 л. с. (735 кВт), массой до 500 т на рельсовом ходу. Следующим решающим фактором в развитии строительных машин стало освоение в начале XX в. гусеничного, а затем пневмоколесного хода. В 20-е гг прошлого столетия начался третий этап развития строительных машин, сопровождавшийся увеличением их мощности, повышением производительности, снижением энергоемкости и материалоемкости, применением более совершенных видов привода и управления, созданием сменного рабочего оборудования для различных условий и видов работ. Начало XX столетия знаменуется заменой на строительных машинах парового привода двигателями внутреннего сгорания в широких масштабах. Началось внедрение индивидуального электрического и гидравлического приводов, а также современных систем управления.  [c.21]

По сравнению с другими типами тепловых двигателей (паровыми машинами, двигателями внутреннего сгорания и газовыми турбинами) паровые турбины имеют ряд суш ественных преимуществ постоянная частота вращения вала, возможность получения частоты вращения, одинаковой с частотой вращения электрогенератора, экономичность работы и большая концентрация единичных мощностей в одном агрегате. Кроме того, паровые турбины относительно просты в обслуживании и способны изменять рабочую мощность в широком диапазоне электрической нагрузки.  [c.185]

Выбор тягодутьевых машин оказывает существенное влияние на мощность и экономичность работы котельной установки. Увеличение сопротивления газового или воздушного тракта по сравнению с расчетными значениями приводит к снижению производительности тягодутьевых машин, т.е. к недостатку тяги или воздуха и уменьшению мощности парового или водогрейного котла.  [c.231]

В 20-е годы текущего столетия начался третий этап развития строительных машин, сопровождающийся особенно быстрым развитием их мощности, производительности, увеличением общей и уменьшением удельной массы на единицу выработки, применением более совершенных видов привода и управления, созданием сменного рабочего оборудования для различных условий и видов работ. Улучшение конструкции электрических машин и двигателей внутреннего сгорания позволило начать в 1918—1920 гг. в широких масштабах замену ими парового привода. Выгоды индивидуального электрического привода с легким и гибким управлением непрерывного регулирования обусловили его широкое применение для сложных и тяжелых машин.  [c.38]

На фабриках и заводах значительная часть энергии, которую доставляет двигатель (паровой или водяной), тратится на трение. Очень поучительно подумать о такой трате и подсчитать ее. Например, крупная бумагопрядильня требует для своего движения паровую машину мощностью в тысячу и более лошадиных сил. Следовательно, она расходует громадное количество энергии. Но во что превращается эта энергия Что мы получаем взамен Результат работы бумагопрядильни заключается в том, что хлопчатая бумага, вата, превращается в пряжу, в нитки, т. е. получается новое расположение частиц хлопка одних относительно других. Этому новому расположению отвечает увеличение потенциальной энергии, но оно так незначительно по сравнению с истраченной энергией, что эту потенциальную энергию почти не стоит принимать в расчет. Почти вся работа громадного двигателя прядильни тратится на трение приводов и машин, т. е. преобразовывается в теплоту. Количество выделяющейся при этом теплоты настолько велико, что бумагопрядильню не нужно отапливать даже при таких сильных морозах, которые бывают в Ленинграде и Москве. Летом теплота, выделяющаяся от трения, производит в бумагопрядильне трудно выносимую духоту, против которой борются усиленной вентиляцией.  [c.286]

Если раньше машинисты депо Красноармейское, Ясиноватая, Иловайское, Пологи и других вынуждены были работать без видимого уровня воды в водомерном стекле и ие могли использовать мощности паровой машины, то применение химических пеногасителей даёт возможность поддерживать уровень воды в водомерном стекле 5 — 6 сж при максимальной форсировке котла и установленной технической скорости.  [c.555]

До конца прошлого века превращение тепловой энергии в механическую работу в поршневых машинах было единственным способом, применявшимся в промышленной практике. Основанный на простейшем принципе непосредственного превращения потенциальной энергии пара в работу, совершаемую поршнем машины, этот способ требовал осуществления отдельного цикла для каждой порции пара, поступающей в цилиндр паровой машины, т. е. принципиально допускал лишь периодический процесс работы теплового двигателя. Как с термодинамической точки зрения (возможно меньшее отклонение от обратимости), так и с конструктивной (наличие возвратно-поступательного движения) этому способу было свойственно медленное протекание процессов, и повышение скоростей лриводило к увеличению потерь и понижению к. п. д, теплового двигателя. Однако простота и наглядность принципа позволяли осуществлять превращение тепловой энергии в механическую в промышленных условиях даже при сравнительно низком уровне развития техники и науки. Простая, неприхотливая и надежная паровая машина весьма успешно удовлетворяла потребностям отдельных промышленных предприятий в двигателях небольшой мощности при небольших скоростях протекания производственных процессов и сыграла огромную роль в развитии промышленности, машиностроительной техники и науки. Развитие термодинамики в громадной степени стимулировалось паровой машиной.  [c.290]


Вместе с тем пока шли бурные споры о том, что же такое тепло, количество вновь построенных паровых машин, превращавших тепло в механическую работу, быстро возрастало, а их преимущества по сравнению с другими источниками энергии день ото дня становились все более убедительными. Правда, высокие расходы по приобретению и эксплуатации паровых машин делали их недоступными для многих заинтересованных предпринимателей. Средняя стоимость паровой машины мощностью от 3 до 4,5 кВт еще в 30-е годы XIX в. колебалась в странах центральной Европы от 6 до 8 тыс. золотых. На покупку паровой машины, требовавшей квалифицированного персонала для ее обслуживания и большого расхода довольно дорогого топлива, решиться было нелегко, тем более что изготовитель не всегда мог поручиться за соблюдение предус-  [c.174]

Неправильная регулировка подачи смазки пресс-масленкой в золотники и цилиндры, применение смазки с низкой температурой вспышки или большим содержанием смолистых веществ, осаждающихся на рабочей поверхности, самовольнсе добавление паровозной бригадой в пресс-мас.ленку масел с низкой температурой разложения и вспышки (например, смазочного мазута) вызывают нагар, приводящий к различным повреждения1М (загорание и поломка колец, задир рабочих поверхностей и др.). Отлагаясь в паровых накалах и окнах и тем самым уменьшая их проходное сечение, нагар усиливает мятие пара, что не дает паровозу возможности развивать нормальную мощность и одновременно увеличивает потребление топлива и воды на единицу работы паровой машины. Нагар, оседающий на крышках цилиндров и дисках поршней, уменьшает объем вредного пространства и нарушает этим нормальную работу паровой машины, вызывая петли отрицательной работы в индикаторной диаграмме. Нагар, попавший в каналы цилиндропродувательных клапанов, либо препятствует посадке их на притирку и вызывает непрерывное парение, либо не дает клапанам открываться на нужную величину, отчего могут возникнуть мощные гидравлические удары, повреждающие крышки цилиндров, поршневую группу и дышловый механизм. Вызывая заедание (так называемое загорание) уплотнительных колец в ручьях, нагар препятствует их нормальной работе, и пар начинает беспорядочно перетекать из одной полости цилиндра или золотника в другую, что резко снижает мощность паровой машины и вызывает значительный перерасход топлива. Более того, отложение нагара в ручье под уплотнительными кольцами нередко приводит к их излому и задиру рабочей поверхности цилиндровых и золотниковых втулок и колец.  [c.271]

Причины появления и виды неисправностей. Излишняя слабииа подвижных дисков золотников Трофимова относительно упорных шайб при посадке приводит к различным повреждениям трещинам в дисках, шайбах и горловинах дисков, обрыву горловин и т. п. Из-за большого нагара, а также несовпадения осей деталей золотника и втулок нарушается нормальная работа золотника и паровой машины, возникает чрезмерное сопротивление при беспарном ходе, быстро изнашиваются золотниковые втулки и кольца. Возможны срывы гаек упорных шайб золотников Трофимова из-за дефектов, допущенных при их изготовлении, и неудовлетворительного крепления при сборке золотника. Неверная сборка или неправильная установка золотника могут вызвать неправильную его работу, что приводит к снижению мощности паровой машины и перерасходу пара и воды.  [c.282]

И только в IV в. начали строить водяные колеса, а в X — ветряные крылья, господствовавшие в энерготехнике наряду с мускулами вплоть до XVIII в., когда им на смену и в помощь пришла паровая машина. Но и в 1917 г. в России, например, работало 46 000 водяных колес, а их суммарная мощность достигала 40% всей установленной мощности в стране (за исключением железнодорожного и водного транспорта, где к этому времени уже утвердилась паровая машина, а позже — двигатели внутреннего сгорания).  [c.15]

Жан Ленуар отлично представлял себе один из главнейших недостатков паровой машины того времени — ее громоздкость. Такую махину нельзя было поставить и использовать на небольшом предприятии, а их было очень много. Типографии, располагаюш,ие двумя-тремя печатными станками, ремонтные мастерские, красильные фабрики, вроде той, на которой ему пришлось работать, требовали компактного экономичного двигателя небольшой мощности.  [c.92]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]

Характерной чертой развития современного машиностроения являются глубокие качественные пзменения продукции этой отрасли. Они находят отражение в повышении единичной мощности (паровые турбины, генераторы, ядерные реакторы достигают мощности в один миллион и более киловатт в одном агрегате), увеличении рабочих скоростей, в повышении точности и качества обработки, снижении металлоемкости и ряде других показателей. Все это ведет к постоянному росту объемов и сложности конструкторских и исследовательских работ и, как следствие, к увеличению сроков разработки новых машин и удорожанию опытно-конструкторских разработок.  [c.10]

Внедрение электрического привода играло революционизирующую роль в промышленном производстве. Сначала электродвигатели устанавливали для привода отдельных машин и станков большой мощности. Затем в цехах предприятий стали заменять паровую машину, выполнявшую функции центрального привода, электродвигателем. Так создавался групповой электропривод с многочисленными трансмиссиями в цеху. Это неизбежно создавало повышенную опасность при работе и обусловливало тяжелые производственные условия. Трансмиссионные передачи представляли собой систему основных и распределительных валов с насаженными на них шкивами, от которых движение с помощью ремней передавалось на шкивы станков. Вся система получала вращение от мощного центрального двигателя, расположенного в цеху или вне цеха. В течение многих десяти.иетий трансмиссии были важной и неотъемлемой частью большинства машиностроительных, текстильных, пищевых, деревообрабатывающих и других предприятий. От расположения трансмиссионных установок (как при паровом, так и электрическом приводе) зависели технологические процессы, наличие и состав подъемнотранспортных устройств, конструктивные формы заводских помещений.  [c.27]


На протяжении всего XIX в. продолжалось усовершенствование паровой машины. С 1800 г., когда окончилось действие патентов Уатта, конструкторы различных стран особенно активно включились в работу по улучшению технических показателей паросиловых установок с поршневым паровым двигателем. Хотя основные конструктивные детали паровой машины и термодинамические основы ее работы оставались неизменными, произошло качественное изменение паровой техники, выразившееся в повышении показателей интенсивности возросли давление и перегрев пара, число оборотов, удельные тепловые и силовые нагрузки и т. д. Использование перегрева пара, начатое еще в 60-х годах, особенно широко распространилось в 90-х годах. Появление быстроходных технологических машин и двигателей транспортных средств потребовало увеличения КПД паровых машин. Большое внимание постоянно уделялось также системам парораспределения, благодаря чему появились технически совершенные устройства. Этому в значительной мере способствовали разработки американского инженера Джорджа Корлиса. Регулирование в его конструкциях сочеталось с небольшим расходом пара и дало основу для изготовления машин большой мощности. На Филадельфийской выставке 1876 г. экспонировалась балансирная машина Корлиса мощностью 2500 л. с. п скоростью вращения 36 об/мин. Однако парораспределительные краны в его машинах не могли работать при перегретом паре, а балансир — при большом числе оборотов и потому не могли следовать за основной тенденцией развития паротехники последней четверти XIX в. Дальнейшее развитие паровых поршневых двигателей пошло по пути создания многоцилиндровых конструкций с многократным расширением пара это привело к повышению КПД в результате использования высокого перепада давлений и уменьшения теплообмена между паром и стенками рабочих цилиндров. В 90-х годах появились машины с двух-, трех-и четырехкратным расширением пара. Благодаря многим техническим усовершенствованиям к концу XIX в. термический КПД паровых машин возрос в 5 раз [1, с. 13—14]. Паровая машина как универсальный двигатель крупной машинной индустрии, транспорта и в известной степени сельского хозяйства (локомобили) занимала все более прочные позиции вплоть до 70—80-х годов.  [c.47]

Примером упрочнения обкатыванием подступичных частей большого размера может служить обработка шеек составного коленчатого вала реверсивной паровой машины мощностью 7360 кет (10 000 . с.). Коленчатые валы такого типа несколько раз выходили из строя на одном уральском металлургическом заводе после сравнительно непродолжительного периода работы (от 1,5 до 5 лет). Авария начиналась с ослабления посадок сопряжений коренных и мотылевых шеек со щеками. Затем разрушались стопорные штифты и шейки проворачивались в отверстиях щек. Кроме того, образовывались трещины усталостного характера в местах посадок и в галтелях.  [c.159]

Мечта изобрести двигатель, который смог бы работать вечно, как вечно и неостановимо движение небесных светил , многие века владела умами человечества. Упорные поиски не прошли даром. В 1769 г английский естествоиспытатель Джеймс Ватт получил патент на изобретенную им паровую машину — первый тепловой двигатель. Международная метрическая система единиц (СИ) увековечила его имя, и с 1960 г. мощность выражается в ваттах.  [c.5]

Несомненно, что разработка конструкций двигателей Стирлинга с 1938 г. прошла через определенные этапы, и учет этогО поможет лучше понять существующие в настоящее время тенденции и пути развития. При этом современный этап не должен рассматриваться изолированно, и к ряду идей и новшеств, предложенных в более ранний период, необходимо вернуться вновь в свете современных знаний. Бил (фирма Санпауэр ) провел такое исследование по поиску подходящих конструктивных решений. Двигатель, созданный в лаборатории Била, по своему виду напоминал ранние двигатели Хенричи, однако с помощью ЭВМ, облегчающих разработку конструкции, и современной технологии материалов удалось получить более чем двадцатикратное увеличение удельной мощности на единицу массы. Такой резкий скачок в характеристиках двигателя Стирлинга побудил фирму Филипс в конце 30-х годов начать собственные исследовательские работы по этому двигателю. Это было время широкого распространения радиовещания, однако электрификация еще не была всеобщей даже в сравнительно развитых странах. Во многих районах легче было достать топливо, чем получить электроэнергию не только через электросеть, но даже от аккумуляторных батарей. Поэтому возникла потребность в портативных электрогенераторах, использующих тепловую энергию, которые могли бы питать радиоприемники и другие подобные устройства. Двигатели таких устройств должны были иметь малые размеры и низкий уровень шума и не возбуждать электрических помех. Дизельные двигатели не удовлетворяли первому из этих требований, а двигатели с принудительным зажиганием — последнему. Сотрудники фирмы Филипс пришли к выводу, что имеются только два реальных устройства, удовлетворяющие этим требованиям, — паровая машина с замкнутым циклом и двигатель Стирлинга.  [c.187]

Сотрудникам фирмы Филипс сразу же стало ясно, что у двигателя Стирлинга значительно больше потенциальных возможностей, чем у паровой машины. И когда над Европой нависла угроза второй мировой войны, фирма начала работы с двигателем Стирлинга, вернувшись к первоначальной концепции 1816 г.— одноцилиндровому двигателю, хотя одним из первых прототипов был двигатель в модификации Райдера с противоположно расположенными цилиндрами. Мы предполагаем, что работа велась в период 1938—1945 гг., поскольку в 1946 г. юыли опубликованы многочисленные технические статьи, содержащие обширную информацию, которая могла быть получена -только в результате работ, продолжавшихся несколько лет. За сравнительно короткий период (немногим менее 10 лет) при неблагоприятной международной обстановке были достигнуты значительные успехи. Фирма Филипс взялась за почти забытый двигатель, дала ему новое название, увеличила его удельную мощность (на килограмм массы) почти в 50 раз, уменьшила его размеры на единицу мощности почти в 125 раз и повысила КПД в 15 раз. Таким образом, двигатель Стирлинга вступил в современную фазу своего развития.  [c.188]

Если машина представляет собой теплово двигатель (двигатель внутреннего сгорания, паровая машина, паровая турбина), водяной или электрически , то исп1>1тание производится с применением соответствующего вида энергии (газообразного или жидкого топлива, пара, воды, электричества). При нсш тании постепенно увеличивают число оборотов и соответствующую нагрузку. В течение установленного техническими условиями пер юда двигатель должен развить оиределеиную мощность 1 работать с этой мощностью при надлежащем числе оборотов.  [c.265]

Так, например, в учебнике Радцига прикладная часть занимала 50% полного объема его. Она содержала многие данные, не имевшие прямого отношения к курсу термодинамики. Здесь рассматривались следующие вопросы влияние на работу паровой машины вредного пространства и числа оборотов четырехтактный двигатель Отто керосиновый двигатель Горнсби газовые двигатели опытное исследование двигателей расходы газа и керосина двигатель Дизеля сравнительная стоимость производства работы двигателями разного рода. В этом очень большо.м по объему разделе приводились данные о стоимости паровых машин и двигателей разной мощности, фунда-  [c.214]

Шестидесятые годы ХУП1 столетия ознаменовались важным событием в развитии паровой техники. В России на алтайских заводах в 1766 г. была сконструирована и построена талантливым изобретателем П. И. Ползуновым (1728—1766) паровая машина мощностью около 40 л. с. оригинальной конструкции, существенно отличавшаяся от атмосферных машин того времени. Машина Ползунова являлась первой машиной, предназначавшейся не для откачки воды, а для заводских целей. Машина, имея два попеременно действовавших цилиндра, представляла собой соединение двух одноцилиндровых машин. Поршни машины посредством сконструированной Ползуновым особой механической передачи были соединены с мехами, вдувавшими воздух в металлургические печи. Машина имела автоматическое парораспределение и автоматическое распределение подачи воды. В мае 1766 г. машина Ползунова была испытана. После нескольких месяцев работы машина была остановлена и больше в работу не включалась. Пуск машины состоялся после смерти И. И. Ползунова.  [c.504]

Для гидросистем металлообрабатывающих станков, металлургического и кузнечнопрессового оборудования Для металлорежущих станков при средних режимах работы при ЛООО об/мин. Для механизмов движения паровых насосов и паровых машин. Для смазки нефтяных двигателей разных мощностей. Для различных машии и механизмов, работающих со средними нагрузками и скоростями, в том числе текстильной промышленности и др., для гидравлических систем станков (с антиокислительиой ерисадкой)  [c.295]

Уж коль мы ведем рассказ об Уатте, имеет смысл вспомнить и об истории лошадиной силы" — первой в метрологии единицы мощности, которую ввел этот талантпивьт механик. Одна из первых паровых машин работала в пивоварне, где вместо лошадей приводила в действие водяной насос. Пивовару машина понравилась, и он решил заказать еще одну, покрупнее. Вот только четко указать, сколько лошадей должна заменить эта вторая машина пивовар не мог, так как не знал точно, на что же способна одна лошадь. Конечно, ему хотелось получить от механика, не нарушая договор, как можно большую мощность. И пивовар выбрал самую лучшую лошадь, запряг в насос, хлестал ее немилосердно в течение восьми часов непрерывной работы и фиксировал количество накачиваемой воды. Получилось немного больше двух миллионов килограммов. Затем Уатт подсчитал, что за секунду лошадь в таких условиях работы поднимала 75 кг воды на высоту в один метр. Эти завышенные, но явно выгодные пивовару данные и были положены в основу первой единицы мощности.  [c.53]



Смотреть страницы где упоминается термин Работа и мощность паровой машины : [c.20]    [c.503]    [c.79]    [c.91]    [c.275]    [c.434]    [c.241]    [c.175]    [c.30]    [c.68]    [c.63]    [c.76]    [c.13]    [c.159]   
Смотреть главы в:

Паровоз (устройство, работа, ремонт)  -> Работа и мощность паровой машины



ПОИСК



Паровые машины мощность

Работа и мощность

Работа машин



© 2025 Mash-xxl.info Реклама на сайте