Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Техника паровая

Научные открытия и изобретения явились не только основополагающим фактором совершенствования традиционной техники парового транспорта, но, что наиболее примечательно, они создавали предпосылки для формирования принципиально новых транспортных средств.  [c.227]

При всей важности и дальновидности решения Парижской Академии в нем не упоминалось о других формах движения и особенно о тепловой вопрос об их связи с механическим движением оставался открытым. Соответственно оставалась и щель для идеологии, разрешающей ppm. Блестящие прозрения Лейбница и Ломоносова имели общий, философский характер. Развитие техники (паровые машины и другие тепловые двигатели,  [c.73]


Остановимся теперь на расчете энергетической эффективности наиболее распространенного в холодильной технике парового обратного цикла, принимая во внимание перечисленные выше источники потерь.  [c.121]

На современной стадии развития техники паровые поршневые двигатели вытесняются более экономичными и компактными паровыми турбинами. Однако паровые машины еще полностью не утратили своего значения и в ряде случаев применение их вполне оправдывается. В настоящее время они еще широко распространены на железнодорожном и водном транспорте.  [c.6]

В технике имеется большая группа машин, в которых работа производится за счет внешней кинетической энергии рабочего тела паровые турбины, газовые турбины, реактивные двигатели, ракеты и др.  [c.197]

Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

В технике часто встречаются сосуды, стенки которых воспринимают давление жидкостей, газов и сыпучих тел (паровые котлы, резервуары, рабочие камеры двигателей, цистерны и т. п ). Если сосуды имеют форму тел вращения и толщина стенок их незначительна, а нагрузка осесимметрична, то определение напряжений, возникающих в их стенках под нагрузкой, производится весьма просто.  [c.259]

Как уже отмечалось, вибрации сопутствуют работе всех машин и часто оказываются причиной, сдерживающей дальнейший прогресс в той или иной области техники. Так, например, дальнейшее увеличение быстроходности высокоскоростных роторных машин ограничено вибростойкостью ротора и подшипниковых опор, повышение мощности паровых и газовых турбин — вибрациями лопаток последних ступеней, создание мощных вертолетов — колебаниями рабочих лопастей, повышение точности металлорежущих станков — вибрациями режущего инструмента и станины, создание высокоточных и надежных систем автоматического управления — вибрациями ее отдельных элементов.  [c.15]


Вследствие большого разнообразия давлений, применяемых в технике, от самых малых (давление в конденсаторах паровых турбин, в вакуумной технике и т. п.) до весьма больших (давление в прессах и т. п) необходимо использовать кратные единицы измерения давления, из которых наиболее часто встречаются  [c.13]

Перечень промышленных объектов, использующих двухфазные потоки, чрезвычайно широк. Достаточно назвать паровые котлы и парогенераторы АЭС, рефрижераторы и ожижители в технике низких температур, выпарные аппараты, испарители, конденсаторы, дистилляционные установки в различных технологиях, газо- и нефтепроводы, чтобы понять, насколько широка сфера применения двухфазных систем. При этом в большинстве названных (и неназванных) примеров имеют дело с организованным движением двухфазных сред в каналах.  [c.287]

Основные понятия. В современной технике все большее распространение получают машины, аппараты и приборы, в которых совершение механической работы связано с преобразованием потенциальной энергии (энергии давления) газа или пара в кинетическую энергию потока (струи) рабочего тела. Изучение рабочих процессов устройств, основанных на использовании кинетической энергии потока, приобретает все большее значение, особенно в связи с развитием современной теплоэнергетики (паровые и газовые турбины), ракетной техники и реактивных двигателей, химической промышленности (инжекторы, форсунки, горелки н пр.) и холодильной техники.  [c.6]

Одним из наиболее новых интересных и важных направлений сегодняшней аэродинамики является исследование обтекания тел различной формы потоком газа с твердыми частицами или каплями. Задачи, относящиеся к этому направлению, возникают при исследовании аэродинамических свойств аппаратов авиационной и ракетной техники, проточных частей паровых и газовых турбин, вентиляторов, фильтров для очистки газа от пыли и капель, нри анализе новых технологических процессов, нанример детонационного напыления, при исследовании движения воздушных масс с каплями влаги или частицами пыли среди городских построек и т. д. Помимо анализа рабочих процессов, знание закономерностей обтекания тел потоками газовзвесей и парокапельных смесей важно также для анализа последствий эрозии из-за ударов частицами и каплями обтекаемых поверхностей.  [c.374]

В циклах двигателей с газообразным рабочим телом работа сжатия составляет значительную часть работы расширения. Применение конденсирующихся рабочих тел в паровых турбинах и неконденсирующихся рабочих тел в ДВС, ГТУ и РД приводит к существенным различиям конструкции, рабочего процесса, термодинамических и технико-экономических показателей сравниваемых двигателей.  [c.132]

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя стать во многих изделиях и конструкциях. Например, корпуса паровых турбин, насосов, вентилей, лопатки направляющего аппарата, коленчатые валы, поршни и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.  [c.61]

Чтобы составить себе представление о том, какие значения термических к. п. д. возможны в описанном цикле, возьмем наиболее широкие пределы температур, возможные для основных типов существующих двигателей. Для п а -ровых двигателей максимальной температурой при современном состоянии техники является та, при которой могут безопасно и длительно работать лопатки турбин и трубки перегревателей, примерно — 650° С. Низшей температурой можно считать достижимую в конденсаторах турбин — около 25° С. Отсюда для наибольших перепадов температур в паровом двигателе термический к. п. д. цикла Карно составит  [c.98]

Получение водяного пара в технике осуществляется по преимуществу в специальных агрегатах — паровых котлах.  [c.106]

Такое сопло (рис. 3-15, а) впервые применил в турбине шведский инженер Лаваль. Введение в технику сопл Лаваля сильно способствовало развитию паровых турбин, так как эти сопла позволили получить большие скорости пара, при которых вытекающая струя обладает большой кинетической энергией.  [c.135]


Исторически термодинамика возникла в XIX в. в связи с необходимостью изучения процессов превращения теплоты в работу в паровых машинах. В XX в. термодинамика как наука охватила уже значительно больший круг вопросов. В настоящее время термодинамический метод исследования широко применяется в различных областях физики, химии, биологии и многих других науках и отраслях техники. Являясь одной из самых обширных областей современного естествознания, термодинамика играет важную роль в системе знаний, необходимых инженеру любой специальности в его практической деятельности.  [c.7]

Рассмотрены тепловые, конструктивные и прочностные расчеты холодильных машин различных типов и их элементов. Даны примеры расчета циклов холодильных машин компрессионных паровых и газовых, абсорбционных и пароэжекторных, термоэлектрических. Приведены методика и примеры расчета компрессоров и аппаратов холодильных машин, а также метод приближенного технико-экономического сравнения машин разных ТИПОВ.  [c.430]

Кроме вращающихся кулачков в технике применяют также поступательно движущиеся и качающиеся кулачки первые имеют большое практическое значение. Кулачковые механизмы широко распространены как в паровых машинах и двигателях внутреннего сгорания для передачи движения клапанам для впуска и выпуска пара или горючей смеси, так и в разнообразных производственных машинах (металлообрабатывающие станки, прессы, молоты, сельскохозяйственные машины ИТ. п.)  [c.124]

Процесс теплообмена при кипении чрезвычайно широко распространен в технике. Кипение жидкостей имеет место в многочисленных выпарных аппаратах, работающих в химической, пищевой, нефтяной и других отраслях промышленности, при генерации пара в паровых котлах и испарителях на электростанциях, при испарительном охлаждении конструкций металлургических печей, в атомных реакторах и во многих других аппаратах современной техники.  [c.161]

В технике широко применяются пары различных веществ воды, аммиака, хлористого метила и др. Наибольшее применение находит водяной пар — реальный газ, являющийся рабочим телом паровых машин. Производство водяного пара для промышленных целей осуществляется в паровых котлах в процессе парообразования при постоянном давлении.  [c.54]

В предлагаемом виде книга является первым опытом составления учебного пособия для энергетических вузов, освещающего с доста-тда10Й полнотой вопросы теории и проектиро-, штия электростанций районного значения. В связи с этим, а также с бурным развитием техники паровых электростанций в СССР и стремлением изложить материал на уровне наиболее передовой отечественной техники, задача, стоявшая перед авторами, представляла в научном, техническом и методическом отношении одновременно значительный интерес н большую сложность.  [c.4]

Известно, что Иван Иванович Ползунов, создатель первой в истории техники паровой машины, изготовил ее в 1766 г., имея один имеритель-ный прибор" - екатерининский пятак толщиной 6 мм. . . Современные станки позволяют обрабатывать детали с точностью 0,005 мм, но это не снижает актуальности знаний приемов приближенных измерений, методов косвенных измерений и других маленьких хитростей".  [c.119]

На фиг. 3-15 показан механический забрасыватель завода Комега в компоновке с антрацитовой топкой и котлом малой производительности. Забрасыватель состоит из ряда лопастей, присоединенных к валу на шарнирных креплениях. Пневматические питатели более совершенны, чем механические. Они конструктивно прош,е, в них отсутствуют метатели, расположенные в зоне обогрева пламенем. В низконапорных пневмозабрасывателях (фиг. 3-24) предварительно применяется разгон частиц топлива за счет силы тяжести при их скатывании по наклонной плоскости, после чего уголь подх1затывается воздушными струями, вытекающими из ряда параллельно включенных сопел. Разработка пневматических забрасывателей является одним из важных и оригинальных достижений советской топочной техники. Паровые  [c.175]

Достигнут значительный прогресс в понимании механизма и причин коррозии паровых котлов. Успехи в этой области связаны с развитием экспериментальной техники исследований при высокой температуре и давлении 134—36]. Для ряда систем были составлены диаграммы потенциал—pH (диаграммы Пурбе) при повышенных температурах, что позволяет более точно предсказывать состояние металла в зависимости от его потенциала и pH среды [37].  [c.288]

В настоящее время в криогенной технике широко используют метод адиабатного расширения для получения низких температур. Процесс расширения газа, близкий к изоэптроиному, осуществляется в этих установках в иоршиевых детандерах и турбодетандерах с отдачей внешней работы. При расширении в области влажного пара понижение температуры в адиабатных процессах (dq = 0) обратимого расширения (ds = 0) и дросселирования одинаково. Однако состояния по завершении каждого из процессов 7—9 и 7—8 различны. Трение в необратимом процессе дросселирования 7—8 привело к увеличению паросодержа-ния потока в конце процесса по сравнению с обратимым процессом 7—9. Увеличепие паросодержания будет тем выше, чем больше работа расширения. Для паровых холодильных машин процесс расширения осуществляют от состояния насыщенной или ненасыщенной жидкости, В этом случае работа расширения в детандере сравнительно мала. Поэтому в паровых холодильных машинах, учитывая также высокую стоимость детандера в сравне-  [c.123]

Регулирование изменением частоты вращения насоса вызывает изменение его характеристики, и, следовательно, изменение рабочего режйма (рис. 7.33)- Для осуществления регулирования изменением частоты вращения необходимы двигатели с переменным числом оборотов. Такими двигателями являются двигатели внутреннего сгорания, паровые и газовые турбины и электродвигатели постоянного тока. Наиболее распространенные в технике электродвигатели с короткозамкнутым ротором практически не допускают изменения частоты вращения.  [c.195]


В начале этой главы отмечалось, что теплообмен излучением широко используется в различных областях техники и в особенности в паровых котлах. Однако в некоторых случаях стремятся уменьшить в [ияние теплообмена излучением и прибегают к защите от лучистой энергии. Это имеет место, например, тогда, когда нужно оградить от действия тепловых лучей людей, работающих в цехе, где имеются поверхности с высокой температурой в других случаях нужно оградить от лучистой энергии отдельные части машин и сооружений от действия лучистой энергии защищают термометры, когда хотят измерить температуру какой-либо газовой среды (например, воздуха), так как при поглощении тепловых лучей ртуть в термометре дополнительно нагревается и температура ртути в этом случае не равна измеряемой температуре газа.  [c.259]

Большой интерес для техники представляет такой случай, когда сам канал перемещается, скажем, в направлении оси и. При таких условиях происходит преобразование энергии, например, в каналах, образованных рабочими лопатками паровых и газовых турбин. На рис. 14.3, а показано рабочее колесо I турбины с насаженными на его ободе лопа1ками 2.  [c.201]

Вторая схема иногда применяется в отопительных котельных с паровыми котлами малой производительности и общем водяном экономайзере. В случае потребления на технологические нужды значительных количеспв пара с разным давлением 1,4 0,7 0,5 0,35 МПа (14 7 5 3,5 кгс/см ) может оказаться экономически целесообразной установка ТЭЦ и паровых турбин с противодавлением вместо котельной и дросселирования пара в редукционной установке. Окончательное решение принимается на основании результатов технико-экономических расчетов [Л. 27].  [c.300]

Развитие термс-динамикн способствовало дальнейшему разпитиро теплотехники. Так, в начале этого столетия появилась холодильная техника, обеспечивающая возможность получения глубокого холода. Стали строиться мощные двигатели внутреннего сгорания, паровые  [c.7]

Приведенный анализ влияния отдельных иа(1аметров и свойств рабочего тела на КПД парового цикла свидетельствует о том, что рабочие ie, ia современных паросиловых установок должны иметь высокие температуры иасыигення при сравнительно небольших давлениях низкие температуры насыщения в конце процесса расширения (примерно равные температурам окружающей среды) при легко осуществимом в энергетической технике вакууме , малые теплоемкости жидкости н болынпе теплоемкости перегретого пара.  [c.316]

Основные направления развития машин. Изучая современные ему машины, К. Маркс писал Всякая развитая совокупность машин состоит из трех существенно различных частей машины-двигателя, передаточного механизма, наконец, машины-орудия или рабочей машины . Для того времени такая совокуп-ноетъ машин> как, например, паровой двигатель, сложная трансмиссия и ряд ткацких станков на текстильной фабрике, определяла уровень развития техники. В дальнейшем с развитием электротехники исходные виды энергии сперва преобразовывали в электрическую энергетические машины, а затем в электродвигателях электроэнергию преобразовывали в механическую, используемую для приведения в движение производственных машин.  [c.273]

Идея турбины как теплового двигателя была известна уже в глубокой древности, но лишь в XIX в. экономические предпосылки и достижения в области науки и техники обусловили значительный сдвиг в развитии турбины как промышленного двигателя. Большой вклад в судовое турбиностроение внесла русская научная мысль. П. Залесов, механик Сузанского завода в Алтайском крае, еще в 1806—1813 гг. построил модели паровых турбин. Над созданием  [c.22]

Отдельно изданных правил технической эксплуатации газотурбонагнетателей нет, поэтому при эксплуатации необходимо строго следовать инструкциям завода-строителя. Отдельные сведения можно получить из Правил технической эксплуатации судовых паровых турбин по некоторым частным вопросам дает письменные указания механико-судовая служба пароходства или ведомства. Кроме того, при обслуживании и уходе за газотурбонагне-тателем необходимо хорошо знать и строго соблюдать правила техники безопасности. Во время эксплуатации газотурбонагнетателя контролю подлежат стабильность параметров газа и воздуха на определённых режимах работы дизеля правильность работы системы охлаждения и смазки газотурбонагнетателя исправность газотурбонагнетателя по параметрам газа и воздуха.  [c.348]

Медноникелевый сплав с добавкой цинка МНЦ 15-20 — нейзильбер ( новое серебро ) коррозионностоек и экономичен. Нейзильбер отличается красивым серебристым цветом и удовлетворительно обрабатывается давлением в горячем и холодном состоянии. Применяется он при изготовлении приборов точной механики, меднциносого инструмента, технической посуды, паровой и водяной арматуры, художественных изделий, деталей в телефонной промышленности,, санитарной техники и изделий ширпотреба.  [c.232]

Из физики известно, что реальные газы при определенных условиях могут быть сжижены или превращены в твёрдое состояние. Иначе говоря, реальные газы являются перегретыми парами определенных жидкостей. В технике широко применяют пары различных веществ воды, аммиака, хлористого метила и др. Наибольшее применение находит водяной пар, который является рабочим телом паровых машин, отопительных и других устройств. Чем ближе газ к переходу в жидкое состояние, тем больше он отклоняется от свойств идеального газа. Уравнение состояния реальных газов, в основу которого были положены представления о молекулярнокинетических свойствах и строении этих газов, было получено в 1873 г. Ван-дер-Ваальсом. Это уравнение имеет вид  [c.13]

Формула (215) показывает, что скорость звука в газе, т. е. скорость распространения упругих деформаций, зависит от при-)оды и состояния газа и является прямой функцией температуры. 1роцессы, связанные с большей скоростью движения газов (паров) по каналам, в которых происходит превращение потенциальной энергии сжатых газов в кинетическую энергию, широко применяются в современной технике в газовых и паровых турбинах, соплах реактивных и ракетных двигателей и др. Большими считаются скорости, близкие, равные или превышающие скорости звука в газе. Например, скорость звука в воздухе при 15° С составляет около 340 м/с. При движении с такими скоростями в потоке газа происходят большие изменения давления, температуры и плотности.  [c.67]

Наибольшее распространение четырехзвенные механизмы получили в технике. Четырехшарнирные кривошипно-коромысло-вые (рис. 2.9, б) механизмы обычно применяются для преобразования вращательного движения ведущего звена в колебательное движение ведомого. Такие механизмы находят применение в конструкциях швейных машин, различных приборов, ткацких станков, гребнечесальных и месильных машин, погрузчиков, киноаппаратов и др. Звено 1, совершающее полнооборотное вращательное движение (рис. 2.9, а, б), называется кривошипом, а звено 2, совершающее неполнооборотное вращательное движение,— коромыслом. Звено 3, совершающее сложное движение, называется шатуном. Возможно и обратное преобразование колебательного движения коромысла во вращательное движение кривошипа, которое имеет место в приводе токарных станков по дереву, точил, кузнечных горнов, балансирных паровых машин и др. Если звенья этого механизма имеют длины а, Ь, с и d, подчиненные неравенству а < Ь < с < d, то существование кривошипа возможно при условии а + d < Ь + с, т. е. если сумма длин наибольшего и наименьшего звеньев меньше суммы длин двух других звеньев (теорема Грасгофа). В противном случае существование кривошипа невозможно (рис. 2.9, б).  [c.23]


В практике часто встречаются случаи, когда объектом расчета является сложное сочетание различных тел, например бетонное перекрытие с замурованными железными балками, изолированные трубопроводы с открытыми фланцами, барабаны паровых котлов и др. Расчет теплопроводности таких сложных объектов обычно производят раздельно по элементам, мысленно разрезая их плоскостями параллельно и перпендикулярно направлению теплового потока. Однако вследствие различия термических сопротивлений отдельных элементов, а также вследствие различия их формы в местах соединения элементов распределение температур может иметь очень сложный характер, и направление теплового потока может оказаться неожиданным. Поэтому указанный способ расчета объектов имеет лишь приближенный характер. Более точно расчеты сложных объектов можно провести лишь в том случае, если известно распределение изотерм и линий тока, которое можно определить опытным путем при помощи методов гидро- или электроаналогии. В ряде случаев достаточно точный расчет можно получить путем последовательного интегрирования дифференциального уравнения теплопроводности (см, 2-2 и 7-1) для различных элементов сложной конструкции. Однако для таких расчетов необходимо привлекать современную вычислительную технику и машинный счет. Наиболее надежные данные по теплопроводности сложных объектов можно получить только путем непосредственного опыта, который проводится или на самом объекте или на его уменьшенной модели.  [c.25]

Пока в ядерпой технике прочно утвердились турбины, главным образом паровые. Для газотурбинных ЯПЭ необходимо повышение температуры теплоносителя выше 750° С, когда ГТУ становится более экономичной, чем ПТУ, а это вносит свои проблемы, особенно проблему жаростойкости твэлов.  [c.147]

Одним из первых по вопросу о соответствии энергоресурсов все возрастающим потребностям в них выступил еще в 1912 г. со статьей Задачи техники в связи с истощением запасов энергии на Земле Н. А. Умов. Он дал развернутый количественный анализ — прогноз состояния энергетики развитых стран Европы, России и США, содержавший все основные элементы современных прогнозных иеследований подсчет разведанных запасов энергетических ресурсов (уголь, нефть, гидроэнергия и др.) оценку коэффициентов их использования определение темпов роста потребностей в энергоресурсах (6 /о в год) расчет обеспеченности их запасами (на 100— 200—500 лет) баланс потребляемой энергии (50% на производство механической энергии, откуда 70—80% — на транспорт около 27% — на отопление 20% — на металлургические и промышленные нужды около 3% — на свет , т. е. на производство электроэнергии) оценку КПД двигателей (паровых машин — средний 6—8%, максимальный 25% и дизелей —33—35%) и теплоиспользующих аппаратов (отопительные приборы —30%, промышленные установки — 40%) и др.  [c.185]


Смотреть страницы где упоминается термин Техника паровая : [c.505]    [c.482]    [c.333]    [c.558]    [c.336]    [c.292]    [c.6]    [c.6]   
Техника в ее историческом развитии (1982) -- [ c.47 , c.49 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте