Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние сжимаемости на сопротивление

ВЛИЯНИЕ СЖИМАЕМОСТИ НА СОПРОТИВЛЕНИЕ  [c.426]

Влияние сжимаемости на сопротивление двумерного симметричного профиля, спроектированного для дозвуковых условии обтекания, иллюстрируется на рис. 15-27 [Л. 14]. На этом рисунке приведены  [c.427]

НИН о влиянии сжимаемости на сопротивление, так как величина Од изменяется со скоростью даже ири постоянном значении коэффициента потерь. Удобной характеристикой потерь при  [c.297]


Увеличение числа М набегаюш,его потока мало сказывается на характеристике компрессорной решетки до тех пор, пока местные скорости на поверхности профиля не достигнут скорости звука. В этом диапазоне чисел М наблюдается обычно лишь некоторое изменение угла отставания потока б и, следовательно, незначительное изменение угла поворота потока Ар при данном угле атаки, вызванное влиянием сжимаемости на распределение давлен ий по контуру профиля. Минимальное значение коэффициента потерь при этом почти не изменяется, но зависимость его от угла атаки становится более резкой. Для примера на рис. 2.32 приведены характе-)истики одной из компрессорных решеток при Mu,i=0,4 и Mu,i = 0,7. Минимальное значение сопротивления решетки при Mu,i = 0,7 достигается здесь при угле атаки, близком к нулю. Этот же результат получается и в других решетках. Вместе с более резкой зависимостью сопротивления решетки от угла атаки это приводит к тому, что при повышенных числах М оптимальный угол атаки лежит обычно в довольно узких пределах 1 опт = 2°.  [c.87]

Воронин Ф. С. Влияние сжимаемости на коэффициент сопротивления трения при турбулентном течении газа//Инж.-физ. журн.  [c.637]

В зависимости от скорости летательного аппарата изменяется качественная картина обтекания его воздухом. При скорости летательного аппарата, близкой к скорости звука, на его полет оказывает влияние сжимаемость воздуха сопротивление воздуха резко возрастает. А при скорости полета, равной скорости звука, скачком изменяются параметры воздушного потока скорость набегающего потока уменьшается, давление и плотность  [c.12]

Изучение влияния сжимаемости на расположение указанных точек позволяет оценить изменение спектра обтекания и сопротивления шара при переходе к большим числам М .  [c.292]

Рис. 4.1.13. Влияние сжимаемости на коэффициент лобового сопротивления профилей различной толщины Рис. 4.1.13. <a href="/info/203852">Влияние сжимаемости</a> на <a href="/info/201990">коэффициент лобового сопротивления</a> профилей различной толщины

Мы рассматривали сопротивление диффузора в таких условиях, когда можно пренебрегать влиянием сжимаемости воздуха, которая, как показывают опыты, начинает сказываться на величине коэффициента потерь лишь в том случае, если скорость во входном отверстии диффузора близка к скорости звука ( 1.>0,7).  [c.459]

Проектируемая ракета в виде тела вращения имеет скорость К. =-= 1000 м/с на высоте // = 10 км. Определите параметры воздушного потока в закрытой рабочей части сверхзвуковой трубы, обеспечивающие аэродинамическое подобие по силам сопротивления трения и силам, вызванным влиянием сжимаемости, натурной ракеты и ее модели, уменьшенной в 20 раз. Температура воздуха в форкамере аэродинамической трубы = 288 К.  [c.76]

Установите связь между средними коэффициентами трения на конусе с к и пластине с fan для ламинарного и турбулентного режимов течения в пограничном слое, предполагая, что параметры невязкого потока, т. е. параметры на границе пограничного слоя, для пластины и конуса одинаковы. Определите без учета влияния сжимаемости сопротивление трения для ламинарного и полностью турбулентного пограничных слоев на поверхности заостренного конуса (полуугол при вершине конуса  [c.670]

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]

В настоящей главе приведены результаты экспериментальных исследований поведения материала при нагружении плоской волной для ряда материалов изучено влияние интенсивности волны на характеристики сжимаемости и сопротивление материала сдвигу проанализировано затухание упругого предвестника волны и его связи с изменением коэффициента вязкости материала проведено сопоставление результатов с данными квазистатических испытаний.  [c.195]

Влияние сжимаемости жидкости (газа) при больших дозвуковых скоростях потока на сопротивление изогнутых каналов может быть учтено коэффициентом к- , определяемым по следующей эмпирической формуле, полученной в работе [6-74] на основе обработки результатов экспериментальных исследований некоторых типов колен и отводов  [c.264]

Влияние сжимаемости потока (числа Маха) на лобовое сопротивление различных тел здесь не рассматривается. Этот вопрос подробно освещается в [10-10, 10-24, 10-34].  [c.470]

Сжимаемые жидкости. Влияние сжимаемости жидкой среды на сопротивление является важнейшим вопросом для газовой динамики и должно учитываться, когда относительная скорость потока приближается к скорости звука или превосходит ее. В этом случае энергия от тела уносится упругими волнами . При высоких дозвуковых и околозвуковых скоростях сопротивление зависит как от числа Рейнольдса, так и от числа Маха. При сверхзвуковых скоростях обычно допустимо пренебрегать силами вязкости и считать, что сопротивление является функцией геометрии тела и числа Маха, т. е,  [c.394]

Сжимаемость воздуха приводит к изменению сил, действующих на лопасть, и таким путем влияет на аэродинамические характеристики несущего винта и движение лопастей. Особенно важно в этом отношении увеличение градиента подъемной силы с числом Маха и резкое возрастание сопротивления и продольного момента при превышении числом Маха определенного критического значения. Если лопасть работает при больших переменных углах атаки (например, отступающая лопасть тяжело нагруженного винта), то влияние сжимаемости имеет важное значение даже при малых числах Маха. С точки зрения аэродинамических характеристик винта влияние сжимаемости проявляется главным образом в том, что коэффициент Ср, профильной мощности быстро возрастает, когда концевое число Маха превосходит критическое (число Маха, при котором начинается дивергенция сопротивления). Это критическое число зависит от угла атаки и возрастает вследствие трехмерности обтекания концевой части лопасти. Увеличение градиента подъемной силы мало влияет на величины и Pis/Po (которые определяются  [c.250]


В работе [А.49] развита теория шума вращения с учетом толщины профиля и роста сопротивления от влияния сжимаемости. Приведенные экспериментальные данные показывают что при больших числах Маха на наступающей лопасти небольшие изменения скорости полета приводят к сильным изменениям формы спектра и суммарного уровня звукового давления. Учет роста сопротивления от влияния сжимаемости приводит к резкому увеличению шума вращения при превышении числом Маха Afi,9o (т. е. величиной М на конце лопасти при ip = 90°) критического числа Маха профиля сечения. При таком учете влияния сжимаемости сходимость расчетных и экспериментальных уровней шума улучшается, особенно для высших гармоник. В работе сделан вывод, что шум винта при больших числах Маха может быть существенно уменьшен путем использования лопастей с тонкими законцовками.  [c.854]

Эта кривая подтверждает ранее высказанное соображение о том, что применение температуры поверхности пластины в качестве средней температуры в пограничном слое должно приводить к преувеличению влияния сжимаемости воздуха (числа М оо) на коэффициент сопротивления пластины.  [c.718]

Бриджмен получил давление 12 ООО кгс/см . Это давление, за исключением давления 21 ООО кгс/см в единичном эксперименте с водой, стало предельным максимальным давлением, полученным до 1930 г. В этом диапазоне давлений по производящей большое впечатление систематической экспериментальной программе, похожей на программу Вертгейма, Бриджмен исследовал зависимость объема и температуры жидкости от давления, процесс сварки под давлением, электрическое сопротивление под давлением, полиморфные превращения в твердых телах под давлением, влияние сжатия на термоэлектрические свойства, теплопроводность под давлением, вязкость под давлением и сжимаемость твердых тел.  [c.92]

В условиях, когда значение числа Не меньше 2300, а значение числа Маха больше 0,2, ламинарный режим течения еше сохраняется, и значения р, приведенные выше, приблизительно применимы. Тем не менее следует учитывать влияние сжимаемости потока на значения / Ке . В соответствии с работой фон Кармана 45] отношение коэффициента гидравлического сопротивления / ,с для сжимаемого потока к для несжимаемого потока при том же числе Рейнольдса (при средних значениях свойств рабочего тела) может быть достаточно точно описано уравнением  [c.56]

Вышеприведенные уравнения могут быть решены, если конкретизирован термодинамический процесс и известен коэффициент сопротивления трения. Эксперименты [Л. 12] с дозвуковым потоком, т. е. при 0<Ма<1, не обнаруживают сущ,ествеиного влияния сжимаемости на сопротивление, когда профиль скорости полностью развит. Следовательно, в этом случае могут использоваться те же коэффициенты сопротивления трения, что и для случая несжимаемой жидкости (рис. 13-12).  [c.312]

Сжимаемость жидкости влияет на сопротивление обтекаемых тел вследствие переноса энергии от тела упругими волнами. Как было показано в 7-5, 13-7 и 14-3, суп ественным параметром в этом случае является число Маха. Влияние сжимаемости на сопротивление в случае капельных жидкостей можно не принимать в расчет, учитывая, что скорость звука в воде равна 1 400 м1сек. и во много  [c.426]

Гаврилов И. Б., Фисенко В. В. Влияние сжимаемости на гидродинамику течения двухфазных потоков. — В кн. Тезисы 5-й Всесоюзной конференции по теилообмену и гидравлическому сопротивлению при движении двух-  [c.124]

Рис. 15-27. Влияние сжимаемости на лобовое сопротивление симметричных профилей бесконечного удлинения (по Горнеру [Л. 14]). Рис. 15-27. <a href="/info/203852">Влияние сжимаемости</a> на <a href="/info/18721">лобовое сопротивление</a> <a href="/info/411041">симметричных профилей</a> бесконечного удлинения (по Горнеру [Л. 14]).
Углублению теории течения реальных газов посвящен также ряд исследований Э. А. Оруджалиева, проводимых им на протяжении многих лет. Из работ Оруджалиева можно назвать следующие Скорость звука для реальных газов (1958) Скорость истечения реального газа с учетом сопротивлений (1959) Общее уравнение течения реального газа (1959) Одномерные потоки высоких давлений при наличии трения (1959) Определение теплоемкостей реального газа на основе экспериментальных данных по ультразвуку (1960) Влияние сжимаемости на коэффициент гидродинамического сопротивления и расчетные уравнения в магистральных газопроводах (1961) К теории течения реального газа в магистральных газопроводах (1961) Расчетные уравнения для течения реального газа в магистральных газопроводах при наличии теплообмена на головном участке (1961).  [c.330]

Влияние сжимаемости на обтекание плохообтекаемых тел. В качестве примера рассмотрим обтекание шара. Для шара Мкр 0,6 (рис. 18.10). При Моо<Мкр сжимаемость газа проявляется в увеличении абсолютных значений dpjdx O. Это приводит к стабилизации ламинарного пограничного слоя и затягиванию кризиса сопротивления на большие числа R kp, например, Кекр 4,57 10 при Моо = 0,5 вместо Некр = 3,2 10 при Моо = 0 (см. рис. 5.2).  [c.354]


Оценивая влияние сжимаемости на коэффициент сопротивления трубы при сверхзвуковых скоростях, необходимо различать три основных режима течения в трубе. Первый режим отвечает бесскачковому движению потока, скорости которого в каждом сечении трубы сверхзвуковые. Как уже было показано, такой режим возможен, если длина цилиндрической трубы меньше предельного значения ( <Х 1акс) Если же в трубе имеется соответствующ.ий источник возмущения, то при Х<Хмакс сверхзвуковой поток может быть насыщен скачками уплотнения. Возмущение потока в трубе может быть вызвано угловым поворотом стенки, который образуется в сечении стыка сопла Лаваля с трубой. В простейшем случае расширяющаяся часть сопла выполняется конической с различными углами раствора. Чем больше угол раствора сопла, тем больше угол отклонения потока при входе в трубу и тем интенсивнее скачок, образующийся в точке поворота стенки. Такие режимы течения с коническими скачками, когда поток вплоть до выходного сечения остается сверхзвуковым, составляют  [c.226]

Влияние сжимаемости на коэффициент лобового сопротивления профилей можно оценить по графику функции схсш схпсж= ( оо. А), представленному на рис. 4.1.13, либо по формуле К. К. Федяевского  [c.164]

Для определения влияния сжимаемости на коэффициент сопротивления находим из рис. 4.1.13 отношение Ся сж/Сзсясж== 1,01, по которому вычисляем  [c.176]

Сингх [710] рассмотрел влияние вращения магнитного поля и сжимаемости на возмущения, вызываемые медленными пульсациями сферической частицы из электропроводного вещества в электропроводной вязкой среде и на коэффициент сопротивления.  [c.487]

Мы остановимся лишь на влиянии сжимаемости газа на сопротивление при повороте потока. На рис. 8.36 нанесены экспериментальные данные Н. Н. Круминой для зависимости отношения коэффициентов сопротивления от приведенной скорости перед поворотом в колене (3) и отводе 1, 2). В несжимаемой жидкости зо = = 1,05 20 = 0,3 при rold = 0,75 и Iso = 0,2 при ro/d = 1 = 0,1 при го/d = 2,5. Влияние сжимаемости газа на потери в очень плавном отводе не проявляется, а в колене становится наиболее значительным, особенно при > 0,4. Опыты велись при R =- > 2 10 ,т. е. в области, где влияние вязкости несущественно.  [c.464]

Обтекание плохообтекаемых тел двухфазным потоком. На примере обтекания таких тел можно проследить влияние двухфаз-ности на положение точек отрыва двухфазного пограничного слоя, протяженность локальной области автомодельности по числу Рейнольдса, развитие кризиса сопротивления при отрыве турбулентного слоя и, наконец, влияние сжимаемости.  [c.16]

Ранее [17] установлено, что при критическом истечении однофазной жидкости влияние сжимаемости ок ывается определяющим при протекании процесса в области, автомодельной по числу Рейнольдса (Re), при этом влияние диссипативных сил в околозвуковой области течения становится исчезающе малым вследствие вырождения турбулентности. Однако практическое использование этого эффекта в трубах при движении в них однофазных сред проблематично, прежде всего, из-за большой скорости звука в таких средах. Кроме того, влияние этого эффекта при движении однофазной среды реализуется лишь на очень коротком участке трубы, примыкающем к выходному сечению трубы, так как скорость звука в адиабатном канале постоянного сечения при движении в нем однофазной среды достигается лишь один раз на выходе из канала. Иначе обстоит дело со скоростью звука в двухфазном потоке как показано в [55], при одних и тех же параметрах торможения в зависимости от структуры двухфазного потока и степени термического и механического равновесия фаз в нем скорость звука может меняться в очень широких пределах. Кроме того, в настоящее время теоретически обоснован и экспериментально подтвержден тот факт, что скорость звука в двухфазном потоке при определенном соотношении фаз может оказаться на два порядка ниже, чем в жидкой фазе. Таким образом, трансзвуковой режим течения может быть достигнут на конечном участке длины трубопровода при умеренных значениях скорости звука (несколько десятков и даже несколько метров в секунду). В этом случае коэффициент сопротивления является функцией не только вязкости потока, но и его сжимаемости, определяемой числом Маха. Более того, при движении с околозвуковой скоростью влияние wi nnaTHBHbLX сил становится исчезающее малым вследствие вырождения турбулентности. Уменьшение потерь на трение при больших массовых расходах отмечалось в опытах при движении двухфазной смеси в замкнутых контурах циркуляции [32]. Таким образом, при критическом истечении влияние сжимаемости  [c.119]

Сопротивление тел в околозвуковом, сверхзвуковом и гиперзвуковом диапазонах скоростей представляет особую область газовой динамики, которую во вводном курсе осветить невозможно. Поэтому здесь будут приведены лишь некоторые экспериментальные результаты для основных форм обтекаемых тел и некоторые ссылки на более обширные источники информации. Изменение коэффициента сопротивления сфер и цилиндров в зависимости от числа Маха свободного потока в диапазоне от 0,1 до 10 иллюстрируется на рис. 15-29. На этом рисунке показано влияние сжимаемости при числах Рейнольдса как выше, так и ниже того, которое необходимо для перехода в пограничном слое от ламинарного течения к турбулентному. Для чисел Маха больше 0,7 влияние вязкости стаиовится малым, и кривые сливаются. Для сопоставления на рис. 15-30 Л. 14] показаны характеристики сопротивления удлиненной ракеты, корпус которой представляет собой заостренное тело вращения. Это тело имеет очень высокое критическое число Маха (Макр 0,95), и при Ма=3 сила сопротивления, действующая на него, составляет примерно 1/5 от сопротивления сферы с тем же диаметром, что и максимальный диаметр ракеты. Удобообтекаемое с точки зрения дозвукового потока тело, т. е. тело со скругленной передней кромкой, испытывает в сверхзвуковом потоке очень высокие силы сопротивления по сравнению с заостренными телами.  [c.428]

Вибрации вертолета с частотами, кратными NQ, вызваны высшими гармониками нагрузок на несущем винте. Источники этих нагрузок — след винта и эффекты срыва и сжимаемости на больших скоростях полета. На режиме висения вибрации вер-— толета невелики вследствие почти полной осевой симметрии его обтекания. Единственным возбудителем высокочастотных гармоник нагрузок является небольшая асимметрия, вносимая влиянием фюзеляжа и других винтов. На малых скоростях полета (при 0,1) обычно наблюдается резкое увеличение вибраций, обусловленное большой неравномерностью поля индуктивных скоростей. Аэродинамическое сопротивление вертолета на малых скоростях невелико, поэтому наклон ПКЛ также мал, и концевые вихри лопастей остаются вблизи диска винта. Характеристика режима полета все же достаточно велика, поэтому лопасти проходят вблизи концевых вихрей предшествующих лопастей. Такое взаимодействие вихрей и лопастей приводит к сильному росту высших гармоник аэродинамических нагрузок, которые передаются через втулку и создают вибрации. Вибрации вообще увеличиваются в случаях, когда вихревая система находится вблизи диска винта, например на режимах торможения или снижения. Для увеличения скорости полета ПКЛ наклоняется вперед, что создает пропульсивную силу при этом вихри уносятся потоком от диска винта, и вибрации, вызванные влиянием вихрей, уменьшаются. На больших скоростях полета вибрации вновь возрастают в основном в результате увеличения высших гармоник нагрузок, вызванного эффектами срыва и сжимаемости. Максимальная скорость полета вертолета часто ограничивается именно этими вибрациями.  [c.638]


К. К. Федяевский более простым методом, чем Франкль и Войшель, учел влияние подогрева поверхности и сжимаемости воздуха на сопротивление трения пластины. Как указывалось, Калихман (1945) предложил приближенный метод расчета турбулентного пограничного слоя (па криволинейной поверхности при Рг = 1).  [c.325]


Смотреть страницы где упоминается термин Влияние сжимаемости на сопротивление : [c.460]    [c.470]    [c.304]    [c.802]    [c.641]    [c.232]    [c.3]    [c.234]    [c.71]    [c.312]    [c.469]    [c.117]   
Смотреть главы в:

Механика жидкости  -> Влияние сжимаемости на сопротивление



ПОИСК



Жидкость баротропная влияние сжимаемости на сопротивление

Сжимаемость

Сжимаемость, влияние

Сопротивление влияние отрыва и сжимаемости

Тонкое крыло в линеаризированном до- и сверхзвуковом потоках. Влияние сжимаемости газа на коэффициент подъемной силы в дозвуковом потоке. Коэффициенты подъемной силы и волнового сопротивления при сверхзвуковом потоке



© 2025 Mash-xxl.info Реклама на сайте