Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы состояния нелинейно-упругого тела

ЗАКОНЫ СОСТОЯНИЯ НЕЛИНЕЙНО-УПРУГОГО ТЕЛА 1. Потенциальная энергия деформации  [c.628]

ЗАКОНЫ СОСТОЯНИЯ НЕЛИНЕЙНО-УПРУГОГО ТЕЛА [ГЛ. VHI  [c.630]

Эти состояния совпадают соответственно с состоянием линейной упругости (закон Гука), состоянием текучести и состоянием упрочнения, рассмотренными выше на основе экспериментальных данных. Термодинамический анализ не только избавляет от этих дополнительных предположений и приводит к условиям текучести и упрочнения, но, что важнее, выясняет природу уравнений теории упруго-пластических деформаций и возможности использования в теории пластичности уравнений нелинейно-упругого тела ). Наконец, развиваемая концепция делает понятным существование потенциала работы деформации.  [c.48]


В предыдущей главе рассматривались стержни, материал которых подчинялся линейному закону упругости. Отметим, что за исключением реактивно нагруженного стержня получаемые в этих условиях результаты достаточно хорошо согласуются с данными большого числа и давно ведущихся экспериментов. Для нелинейно-упругого тела все уравнения, полученные во второй главе, остаются справедливыми, если модуль Е в них заменить на модуль Е и учесть, что при неоднородном докритическом состоянии этот модуль становится вдоль стержня переменным. Это усложняет задачу получения точного решения, в то время как трудности при использовании приближенных методов увеличиваются ненамного.  [c.71]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]

Рассмотрены законы состояния сжимаемого и несжимаемого нелинейно упругого тела, постановки и методы решения задач о его равновесии и устойчивости равновесия, уделено место уравнениям термо-упругости.  [c.2]

Уравнения состояния (2.9) для упругого тела представляют собой соотношения, обобщающие закон Гука на случай учета нелинейных эффектов, влияния температуры и возможного присутствия переменных физических параметров Хк (фазовых плотностей и т. п.).  [c.315]

В этом капитальном труде ставится цель построить единую, основанную на минимуме исходных предпосылок (принципы инвариантности, детерминизма, локального действия), теорию поведения сплошной среды. Выделен класс простых материалов , для них тензор напряжений зависит от истории изменения градиента вектора перемещения (но не от градиентов более высокого порядка). К числу таких материалов относятся упругое и гиперупругое тела. Дан исчерпывающий обзор решений частных задач, большое место уделено установлению приемлемых форм задания законов состояния и критериям выбора зависимости удельной потенциальной энергии деформации гиперупругого тела от инвариантов деформации. Книга снабжена исчерпывающей библиографией по нелинейной теории упругости доведенной до 1965 г.  [c.926]


Принимается, что закон Гука в форме (2.1.1) представляет собой не линеаризованное, а точное соотношение, причем используемые при его формулировке переменные - напряжения, перемещения и координаты - можно полагать либо лагранжевыми, либо эйлеровыми (см. 3.1). Тем самым вводятся две различные механические системы, отличия между которыми проявляются в области, где существенна геометрическая нелинейность. В том же параграфе показано, что решения задач из гл. 2 для трещин, берега которых свободны от внешних нагрузок, отвечают лагранжевой интерпретации и соответствуют определяемой ею модели упругого тела. Модель эта характеризуется взаимно однозначной связью между напряжениями - тензором Пиолы-Кирхгофа и градиентом перемещения. Последний определяет потенциальную энергию системы. Однако данная модель не отвечает никакому реальному уравнению состояния. Достаточно сказать, что напряжения (ограниченные) возникают здесь и при повороте тела в целом. Для модели, соответствующей эйлеровой интерпретации, кроме того, энергия деформации непотенциальна.  [c.68]

S4 ЗАКОНЫ Состояния НЕЛИНЕЙНО-УПРУГОГО ТЕЛА [ГЛ. VIII  [c.654]

Нелинейно-упругое тело. Состояние упругого тела вполне описывается деформациями. Согласно первому и второму законам тер-модинамикн, для обратимых систем сущ,ествует упругий потенциал /(о ) такой, что  [c.10]

Своеобразная трактовка разрезов-трещин как нетривиальных форм равновесия упругих тел с физически нелинейными характеристиками, предложенная В. В. Новожиловым [195, 196], помогает понять возможную причину образования щелевидных областей или пустот. Известно, что при увеличении расстояния между атомами твердого тела меясатомное усилие возрастает до максимума, а затем падает. Равновесие атомов, взаимодействующих по закону нисходящей ветви этой кривой, неустойчиво. Атомный слой, находящийся между двумя другими фиксированными слоями, имеет одно положение неустойчивого и два положения устойчивого равновесия. Поэтому различные причины (тепловые флуктуации, местные несовершенства кристаллической решетки, растягивающие напряжения от внешней нагрузки) создают условия для преодоления потенциального барьера при переходе (через максимум силового взаимодействия) от устойчивого состояния равновесия к неустойчивому. Видимое проявление неустойчивости сводится к перескоку атомного слоя (точнее, его части) в новое положение, что характерно для явления, носящего назваипо устойчивости в большом .  [c.69]

Часть IV (гл. VIII, IX) посвящена основам нелинейной теории упругости формулировкам закона состояния нелинейноупругого тела, рассмотрению простейших задач, постановкам задач об эффектах второго порядка и бифуркации состояния равновесия. В содержание Приложений включены используемые в тексте книги способы тензорного исчисления и некоторые сведения по теории сферических и эллипсоидальных функций.  [c.12]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]


При установлении соотношений между напряжениями и деформациями для таких полухрупких материалов, каким является серый чугун, в случае произвольного напряженного состояния часто прибегают к линейной аппроксимации кривой деформирования [6]. С другой стороны, явно выраженное отклонение от закона Гука дает основание решать задачу при сравнительно малых деформациях в нелинейно-упругой постановке [187 ]. Оба этих подхода исключают из комплекса физических процессов, протекающих в материале под действием приложенных напряжений, наличие пластических деформаций, которые в сером чугуне, по данным работ [441, 476], соизмеримы с упругими уже в начальной стадии деформирования. Поэтому зависимости между напряжениями и деформациями для рассматриваемого упруго-дластического тела можно искать в форме, аналогичной соответ-  [c.332]

Учет ползучести при сжатии в поперечном направлении осуществляется следующим образом. Используя запись закона да )ормирования для поперечного сжатия в виде дифференциального уравнения нелинейной реологической модели типичного тела, получим уравнение осесимметричной задачи, в котором левая часть, записанная через Ог> аналогична соответствующему уравнению относительно Ог нелинейно-упругой задачи намотки, а правая часть, выраженная через а , может для данного момента времени < считаться заданной. Таким образом, непрерывный процесс намотки заменяется мгновенным наложением витка толщиной Дгг и выдержкой в стационарном состоянии в течение времени ДЛ соответствующему реальному времени непрерывной намотки этого витка. Вычисленные значения методом, аналогичным использованному при построении дискретно-кольцевой модели намотки нелинейно-упругих материалов, умноженные на приращение времени Ы, позволяют определить новое напряженное состояние, предшествующее намотке уже следующего витка и т. д. Полученное распределение напряжений после намотки с конечной скоростью и последующей релаксацией (ускоряемой при разогреве) находится в вилке между распределением напряжений при мгновенной намотке (мгновенная изохрона о — е ) и последующей релаксацией бесконечно медленной намотки (изохрона Ог — Ъг при I оо).  [c.466]

Появление выраженных границ раздела с разными законами деформирования связано в первую очередь с наличием на одномерных диаграммах (чистый сдвиг, простое растяжение-сжатие) характерных точек типа то — начальных пределов упругости только за этими точками к упругим деформациям начинают присоединяться пластические. Если же допустить, что последние в исчезающе малых дозах присутствуют на всем пути активного деформирования из естественного состояния, то поведение пластического материала в одномерном, а в условиях применимости деформационной теории и при произвольном состоянии становится неотличимым от поведения нелинейно-упругого тола, и какие-либо разграничительные поверхности в деформируемом теле отсутствуют. Такая замена упруго-пластического тела па иелинейно-упру-гое часто используется в приложениях. Выбор аппроксимации одномерной диаграммы достаточно широк, но в конкретных примерах мы будем пользоваться кривой в виде кубической параболы, которая, как показывают эксперименты, достаточно хорошо может описывать поведение таких, например, материалов, как алюминиевые сплавы.  [c.70]

В задачах теории пластичности стеленной закон редко дает удовлетворительное описание экспериментальных кривых. Как правило, приходится решать упругопластическую задачу, в рамках деформационной теории пластичности нет разницы между формулами, описывающими упругое и пластическое состояния, но функция s(t ) оказывается линейной для достаточно малых значений v и нелинейной после достижения предела текучести. Это обстоятельство, естественно, усложняет решение задачи, хотя трудности не носят принципиального характера. Более серьезным моментом служит то, что предположение о несжимаемости материала для упругопластических тел, строго говоря, не выполняется. Имеются многочисленные решения, учитывающие эффект сжимаемости, нам не кажется, что получаемое при этом уточнение настолько серьезно, чтойы была необходимость излагать соответствующие результаты.  [c.636]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]



Смотреть страницы где упоминается термин Законы состояния нелинейно-упругого тела : [c.5]    [c.101]    [c.145]    [c.16]    [c.357]    [c.228]   
Смотреть главы в:

Теория упругости  -> Законы состояния нелинейно-упругого тела



ПОИСК



Закон упругости

Законы нелинейные

Состояние упругое

Тело нелинейно-упругое

Упругие тела

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте