Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая обработка нержавеющих сталей

Удаление окислов термо-механическим путем. При этом способе удаление тугоплавких окислов осуществляется в основном за счет абразивного действия частиц, увлекаемых потоком кислорода режущей струи. Применение для этой цели кварцевого песка или кальцитов позволяет удалять окислы хрома с поверхности реза при обработке нержавеющих сталей. Одновременно возможно и некоторое флюсование окислов с образованием силикатов. Процесс удаления окислов протекает в этом случае за счет абразивного действия твердых частиц песка, которые непрерывно удаляют образующиеся окислы. Однако, несмотря на дешевизну, кварцевый песок широкого промышленного использования не получил, так как в этом случае производительность резки снижается более  [c.8]


Механической резке подвергают двухслойные листы сравнительно небольших толщин до 20—25 мм, для более толстых листов применяют кислородно-газовую резку. Известно, что этот способ применим для металлов, у которых температура плавления окислов, образующихся при нагреве, ниже температуры плавления металла и, одновременно, окислы могут быть сдуты подаваемым под высоким давлением кислородом. Этим способом без особых трудностей режут листы больших толщин из нелегированных сталей, получая при этом ровную гладкую кромку, не требующую дальнейшей обработки. Нержавеющие стали, легированные хромом, труднее поддаются резке, так как получающийся при этом вязкий шлак из окислов хрома не выдувается давлением кислорода. Для нержавеющих хромистых и хромоникелевых сталей применяют способ кислородно-газовой резки с до-  [c.183]

Под влиянием наклепа прочность аустенитных сталей может повышаться более чем в 2 раза, твердость — в 2,5—3 раза, при этом пластичность снижается более чем в 4 раза, а ударная вязкость в 7 раз. Аустенитная сталь после наклепа становится магнитной, так как часть аустенита превращается в феррит. Чем больше степень деформации, тем сильнее проявляются магнитные свойства. Эти свойства нержавеющих сталей создают известные трудности при холодной механической обработке (при резании, гибке), например режущий инструмент для обработки нержавеющих сталей должен быть хорошо заточен, желательна специальная доводка режущих кромок при работе притупленным инструментом образуется наклепанная поверхность, что затрудняет дальнейшую обработку резание обычно производится с обильным охлаждением эмульсиями.  [c.13]

Второе издание справочника было выпущено в 1969 г. Настоящее издание значительно дополнено данными о коррозионной стойкости нержавеющих сталей и чистых металлов. Приведены показатели коррозионной стойкости нержавеющих сталей, чистых металлов и высоколегированных сплавов во многих химических средах различной концентрации и при разных температурах. Даны химический состав, механические свойства нержавеющих сталей, режимы термической обработки, методы удаления окалины и др.  [c.2]

В табл. 4 приведены режимы термической обработки и получаемые при этом механические свойства нержавеющих сталей и сплавов.  [c.109]


Механическая обработка титановых сплавов аналогична обработке нержавеющих сталей. Следует учитывать низкую теплопроводность.  [c.207]

Режимы термической обработки (обычно применяемые) хромистых нержавеющих сталей U получаемые при этом механические свойства приведены в табл. 82.  [c.482]

Режимы термической обработки и механические свойства хромистых нержавеющих сталей  [c.482]

Химический состав, термическая обработка и механические свойства основных марок хромистой нержавеющей стали показаны в табл. 19.  [c.32]

Показанные на рис. V.6 лопасти с пером, сваренным из листов нержавеющей прокатанной стали Д-50, эксплуатируются на опытном агрегате Волжской ГЭС с 1963 г. Будучи пустотелыми, они имеют меньшую массу и в то же время достаточно прочны, так как в них основную нагрузку при изгибе несут наружные слои. Такие лопасти не требуют наружной механической обработки, но это создает трудности, так как требует повышенной точности при изготовлении. Заготовки пера получают на мощных прессах в специальных штампах и после сварки термически обрабатывают. При этом надо предотвратить возможные деформации. Недостаточно изучены спектры колебаний таких лопастей, которые могут иметь низкие составляющие частоты, поэтому при конструировании следует обращать особое внимание на обеспечение достаточной жесткости лопасти.  [c.140]

Лопатки газовых турбин изготовляют из штампованных или литых заготовок и обрабатывают электрохимическим способом. Затем лопатки шлифуют и полируют. Компрессорные лопатки выполняют из штампованных заготовок, окончательная форма лопаток получается путем механической или- электрохимической обработки с последуюш,им шлифованием и полированием. В качестве материала для лопаток компрессоров и паровых турбин применяют нержавеющие стали, для лопаток газовых турбин — сплавы на никелевой и кобальтовой основе.  [c.29]

Коррозионное растрескивание под напряжением может вести к особенно быстрым и серьезным разрушениям. Чтобы механические напряжения могли вызвать коррозионное растрескивание, они должны превысить критический уровень, который зависит от нескольких факторов, таких как состав нержавеющей стали, поверхностная шероховатость, размер зерна, структура, а также состав среды и температура. Растягивающие напряжения в конструкции могут возникать, например в результате сварки и механической обработки.  [c.119]

Механические свойства и термическая обработка литейных хромистых нержавеющих сталей  [c.203]

Горячая механическая обработка аустенитной нержавеющей стали, проводимая для предупреждения склонности стали к межкристаллитной коррозии, осуществляется при температурах ковки и прокатки, обеспечивающих максимальный переход карбидов в твердый раствор. Заканчивается же горячая механическая обработка при температуре ниже температуры выпадения основной массы  [c.136]

Предварительная выдержка ненапряженных образцов из нержавеющей стали в растворе хлористого магния в течение 1—2 час снижает время разрушения образца с 4 до 3 час. Увеличение времени предварительной выдержки до 20 час на времени разрушения образцов не отражается. Очевидно, во время предварительной выдержки происходит образование микротрещин на участках металла, где напряжения создались при механической обработке образцов. Эти микротрещины являются концентраторами напряжений при изгибе образцов, вследствие чего время разрушения их также уменьшается с 4 до 3 час. Как указывалось выше, микротрещины на кромках образцов появляются в течение нескольких минут. При этом напряжения, вызванные механической обработкой образцов, снимаются, и вследствие этого процесс коррозионного растрескивания дальше не развивается. Из изложенного видно,, почему увеличение длительности предварительной выдержки не влияет на время разрушения образцов. При аустенизации образцов напряжения, вызванные холодной обработкой, снимаются, поэтому предварительная выдержка образцов в среде не способствует более быстрому появлению разрушений.  [c.141]


Если оборудование изготовлено из нержавеющей стали перед монтажом, оно должно пройти механическую и химическую очистку, а затем его необходимо промыть водой и насухо протереть. После этого отдельные части оборудования, чтобы они не подвергались загрязнению, герметизируются или помещаются в специальную тару. Иногда проводится еще дополнительная обработка травлением различными кислотами и комплексообразователями. При наличии на поверхностях оборудования маслянистых отложений, они обязательно подвергаются обезжириванию органическими растворителями.  [c.300]

ИЗ ОДНОЙ поковки с внутренним поясом, ограничивающим сопловый канал со стороны, обращенной к оси турбины. На кромках лопаток сняты фаски шириной 5,5 мм под углом 45°. Внешняя сторона каждого соплового канала закрыта плоскими фасонными вставками, имеющими очертания соплового канала со снятыми фасками такого же размера, как на лопатках. Вставки приварены с наружной стороны к лопаткам, образуя после сварки сплошную ленту, к которой в свою очередь приваривается внешний пояс. По концам сегмента ввариваются торцовые заглушки. При изготовлении данного узла из хромистых нержавеющих сталей сварка выполняется с подогревом и после нее необходима термическая обработка. Режимы подогрева и термической обработки узлов в зависимости от марок свариваемых сталей приведены в главе V. После окончательной механической обработки сегменты заводятся со стороны разъема цилиндра в пазы, выточенные в сопловых коробках.  [c.139]

Титан легко куется, штампуется и прокатывается при высоких температурах. Его можно деформировать при комнатной температуре. Многие сплавы титана, а также нелегированный технический титан хорошо свариваются в атмосфере инертных газов сваркой всех видов, кроме атомно-водородной. Титан можно соединять пайкой со сталями и цветными металлами. Титан можно подвергать механической обработке резанием. Его обрабатываемость близка к обрабатываемости аустенитной нержавеющей стали. Титановые сплавы можно подвергать термической и химико-термической обработке и тем самым изменять их механические свойства. Наконец, титановые сплавы можно применять для изготовления фасонных отливок.  [c.67]

Механическая обработка (точение, фрезерование, сверление и т. п.) сплавов ВТЗ, ВТ6, ВТ4, ВТ6С и ОТ4-2 сходна с обработкой нержавеющих сталей. Сплавы ВТ4, ВТ6С и ОТ4-2 удовлетворительно свариваются аргонодуговой и контактной сваркой, также электрошлаковой и сваркой под флюсом. Аргонодуговая сварка осуществляется с присадкой из сплава ВТ1-1. Сплав ВТ6 удовлетворительно сваривается контактной и аргопо-дуговой сваркой. После аргонодуговой сварки необходима термическая обработка для восстановления пластичности сварного соединения (отжиг при 700— 800°).  [c.335]

При выборе стали для изделия, работающего при чередующемся нагреве и воздействии морской атмосферы, коррозионная стойкость оценивалась по результатам циклических испытаний. Результаты испытаний серии опытных плавок приведены в табл. 2, из которой видно отрицательное влияние на коррозионную стойкость увеличения концентрации углерода в стали и повышения содержания хрома от 16,86 до 18,64 , вызванное повышением количества а-ферри-та до неблагоприятных концентраций. Циклические испытания в сочетании с исследованием механических свойств и теплопрочности позволили установить состав и оптимальную термическую обработку нержавеющей стали, работающей при нагреве и подвергающейся воздействию влаги после охлаждения это сталь Х16Н2М (ЭП479), применяемая после закалки (с 1040° в масле) и отпуска при 650°. Ее коррозионная стойкость при циклическом испытании характеризуется величиной 0,06 г м -час.  [c.180]

Ркточникамн контактной коррозии являются механические соединения разнородных металлов, сварные и паяные соединения, попадание инородных частиц на поверхность металла, подвергнутую коррозии, например, остатки стальной дроби после дробеструйной обработки нержавеющей стали или вторичное осаждение более благородных металлов из электролита и т. д., пористые покрытия.  [c.28]

Механическая обработка нержавеющих и хромоникелевых сложнолегированных сталей, жаропрочных деформируемых и литейных сплавов на никелевой основе вызывает большие затруднения, связанные с особыми свойствами этих материалов — большой вязкостью и низкой теплопроводностью. Большие трудности возникают и при механической обработке титановых сплавов. В связи с этим представляет значительный интерес опыт обработки таких материалов методом анодного точения лентой. Этот метод позволяет при высокой производительности получать заготовки с минимальными припусками под следующую чистовую обработку точением или шлифованием.  [c.97]

Следовательно, для рассмотренных способов вытяжки необходимо выбирать металл с различными механическими свойствами им в различном состоянии в первом способе вытяжки — повышенной пластичности при пониженной прочности (стали 08—10 в отожженном или нормализованном состоянии с дрессировкой) во втором способе вытяжки — повышенной прочности при достаточно высокой пластичности и вязкости (стали 08—10 после специальной обработки, нержавеющая сталь 12Х18Н9Т) в третьем способе применим металл без повышенных механических свойств.  [c.84]

В зависимости от свойств обрабатываемых материалов, вида обработки, размера и состояния инструмента, режимов обработки, смазывающих и охлаж-даюнщх технологических сред глубина, степень и интенсивность наклепа может изменяться в широких пределах. При механической обработке конструкционных сталей степень наклепа наиболее часто находится в пределах 20...50 %. У сплавов на никелевой основе, жаропрочных и нержавеющих сталей степень наклепа доходит до 80%, у титановых сплавов, закаленных и высокопрочных сталей м =10...20%.  [c.51]


Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

Механическая обработка усиливает склонность к КРН аусте-нитных нержавеющих сталей, и можно предположить, что радиация вызовет аналогичные изменения. В опытах Дэвиса и др. (651 нержавеющая сталь 316 (17 % Сг, 11 % Ni, 2,5 % Мо) после облучения быстрыми нейтронами разрушалась в кипящем растворе 42 % Mg ia в течение 1 ч, тогда как на разрушение необлучен-ных образцов понадобилось 10 ч. Время разрушения после (но не перед) облучения не зависело от приложенного напряжения (34— 152 МПа) это может свидетельствовать о вызванных облучением высоких остаточных напряжениях, к которым внешнее напряжение оказывается лишь незначительной добавкой. Однако авторы предпочли объяснить свои результаты изменением свойств поверхностной оксидной пленки. Нержавеющая сталь 20 % Сг, 25 % Ni,  [c.154]

Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Так, мягкая сталь обладает превосходными механическими свойствами, легко поддается обработке и является дешевой, но в большинстве случаев имеет слабую сопротивляемость коррозионному воздействию, что приводит к ее постепенному разру-шени1 /0тот недостаток можно устранить, сплавляя сталь с более коррозионно-устойчивыми металлами, например никелем и хромом, для получения коррозионно-стойкой хромоникелевой нержавеющей стали./Но сплавы этого типа относительно дорогостоящи. Более эк номично наносить тонкое покрытие никелем, а сверху — еш,е более тонкий слой хрома. Этот метод широко применяется для получения противокоррозионной декоративной отделки, которая обладает механическими свойствами мягкой стали и сопротивляемостью хрома и никеля к действию коррозии./  [c.7]

Изучались алюминиевые, титановые, никелевые сплавы и нержавеющие стали. Отливки из алюминиевого сплава А-356 (стержни размерами 380x51 X Хб мм) закаливали в воде от температуры 811 К (выдержка 10 ч) и подвергали старению 16 ч при комнатной температуре и при 427 К 4 ч. Сплавы 6061-Т6 и 7075-Т6 были исследованы в виде листов толщиной 6 мм. Листы из нержавеющей стали 347 испытывали в го-чекатаном состоянии с последующим отжигом и травлением. Нержавеющая сталь 410 закаливалась в масле от температуры 1255 К и отпускалась при 839 К. Нержавеющую сталь А-286 в виде горячекатаных и травленых плит закаливали на воздухе от 1255 К (выдержка 1,5 ч) и старили при 1005 К в течение 16 ч. Титановый сплав имел очень низкое содержание примесей. Его испытывали после горячей прокатки н отжига. Образцы сплава Hastelloy С вырезали из листа толщиной 6 мм и испытывали после обработки на твердый раствор в соответствии с AMS-5530-С. Холоднокатаный и травленый лист толщиной 6 мм из сплава In onel Х-750 был состарен при 977 К в течение 20 ч с последующим охлаждением на воздухе. Образцы из сплава D-979 вырезали из штамповок для дисков турбины. В табл. 1 приведены механические свойства этих материалов при комнатной температуре.  [c.93]

Второе направление борьбы с поверхностными очагами разрушения заключается в создании поверхностных слоев, не чувствительных к повреждениям. Для предотвращения опасности механических повреждений во многих случаях может быть достаточным регулируемое обезуглероживание. Еще более действенно плакирование высокопрочной стали менее прочными и более пластичными марками, особенно нержавеющей стали. В последнем случае плакированный слой способен предотвратить опасность не только механических повреждений, но и повреждений диффузионного и коррозионного происхождения. Плакировка может производиться различными методами в процессе прокатки, выплавки, путем наварки и др. Наиболее высокое качество дает производство плакированных полуфабрикатов путем сварки взрывом. Плакированный слой толщиной 0,5 жм, как видно из рис. 43, значительно повышает надежность, однако он значительно усложняет и удорожает как получение полуфабрикатов, так и дальнейшую обработку, в первую очередь — сварку. Эти обстоятельства пока препятствуют должному применению плакированных высокопрочных сталей и делают более экономически выгодным внедрение регулируемого обезуглероживания или нержавеющих стареющпх сталей.  [c.202]

Механические свойства хромистых нержавеющих сталей ферритного, мартенсито-ферритного и иартенситного классов после оптимальной термической обработки  [c.15]

Корпус форсунок отливают из чугуна и после механической обработки испытывают на давление 120—150 am. Толщина стенок корпуса форсунки должна обесаечить прохождение в ней канала для топлива. Трубки, подводящие воздух, имеют сечение, при котором скорость воздуха не превышает 8—10 м1сек. Материал распылителей — бронза, нержавеющая сталь или сталь 30XBI и т. п.  [c.275]

Как указывалось выше, в явлении коррозионного растрескивания аустенитной нержавеющей стали значительную роль играет наличие в металле механических напряжений. По мнению Д.Д. Харвуда [111,71], наличие напряжений в металле может вызвать 1) фазовые переходы в сплавах, 2) процессы упорядочения и раз-упорядочения в твердых растворах, 3) локализацию анодных участков. Не следует забывать также, что металл может разрушаться при определенной величине механических напряжений и при отсутствии коррозионной среды. В большинстве случаев коррозионнога растрескивания трещины в металле располагаются перпендикулярна направлению растягивающих усилий. Коррозионное растрескивание наблюдается при напряжениях как ниже, так и выше предела текучести [111,72], т. е. когда напряжение в металле создается как непосредственным приложением нагрузки извне, так и при остаточных напряжениях. Последние могут быть следствием холодной деформации, обработки резанием, давлением и т. д. [111,89].  [c.142]


К- Эделеану [111,82 111,92] указывает, что особенно склонна к коррозионному растрескиванию нержавеющая сталь, содержащая квазимартенсит . В том случае, когда весь аустенит превратился в мартенсит, разность в объемах фаз, а соответственно и механические напряжения, отсутствуют. Сталь в этом случае не подвергается коррозионному растрескиванию [111,82 111,94]. К- Эделеану [111,92] считает, что если превращение аустенита в мартенсит прошло не полностью, то зерна аустенита в углах коррозионной трещины находятся в весьма напряженном состоянии, а это значительно усиливает дальнейшее развитие коррозионного растрескивания. По мнению X. И. Роха [111,97], сталь, содержащая 19% хрома и 7,5% никеля, тем более склонна к коррозионному растрескиванию, чем глубже она после закалки при температуре 1050° С лежит в у-области. Эта же сталь в отожженном состоянии содержит 4% феррита и после холодной обработки не растрескивается в растворе хлористого кальция. По мнению автора, в этом случае феррит, являясь анодом, защищает от разрушения зерна аустенита. Вместе с тем X. И. Роха [111,97] указывает, что уже небольшое количество выделившейся ферритной составляющей может существенным образом изменить напряженное состояние в металле.Это обстоятельство видимо, и является решающим для чувствительности стали к коррозионному растрескиванию. Большинство авторов [111,83 111,92 II1,94 111,69] указывает, что чисто аустенитные стали более склонны к коррозионному растрескиванию, чем ферритные и мартенситные. Однако наличие в структуре стали феррита не всегда обеспечивает полный иммунитет к коррозионному растрескиванию [111,99]. Если же в ее структуре имеется б-фаза, время испытаний до разрушения образца увеличивается [111,82 111,100].  [c.146]

Все перечисленные выше экспериментальные факты легко объясняются с точки зрения превращения аустенита под действием механических напряжений. Одним из сильных аргументов в пользу пленочной теории считается влияние обработки поверхности на стойкость аустенитной стали к коррозионному растрескиванию. Считают даже, что этот факт невозможно объяснить лишь с точки зрения теории нестабильности аустенита. Следует при этом напомнить, что характер обработки может существенным образом влиять на фазовый состав поверхностных слоев металла. Так, по данным С. Ямагухи [111,135], после механической полировки поверхностный слой аустенитной нержавеющей стали 18-8становится ферромагнитным. Кристаллы поверхностных слоев её имеют объемноцентриро-ванную кубическую решетку с параметром 2,86 Л. Аналогичный эффект наблюдается и у стали 18-8, легированной дополнительно 3% молибдена. После электрополировки поверхность стали теряет ферромагнитные свойства. При увеличении количества феррита в аустенитной нержавеющей стали до определенной величины (об этом будет сказано далее) стойкость стали к коррозионному растрескиванию существенным образом меняется. Таким образом, и этот экспериментальный факт может быть объяснен с точки зрения теории нестабильности аустенита.  [c.160]

Для поверхностного упрочнения деталей в практике зарубежных заводов применяется низкотемпературное цианирование (мягкое азотирование). Процесс проводится при температуре 560—580° С в продолжение 1—3 ч в цианистых ваннах, содержащих, например, 45% Na N или 35% K NO, чаще с продуванием через них сухого воздуха. Мягкому азотированию подвергаются стальные детали, прошедшие улучшение (закалку и высокий отпуск), окончательную механическую обработку и притирку. Кроме того, обрабатываются детали из серого, ковкого и высокопрочного чугуна и реже из нержавеющей и малоуглеродистой стали.  [c.165]

На рисунках 2-12 и 2-13 представлены данные С. М. Корсо и Р. Л. Койта [Л. 92], иллюстрирующие влияние механической обработки на величину степени черноты нержавеющей стали (рис. 2-12) и нихрома (2-13). Сопоставляются величины степени черноты металла после прокатки (кривые /) и после пескоструйной обработки (кривые 2). Как видно из приведенных данных, пескоструйная обработка поверхности металла значительно повышает его степень черноты.  [c.65]

Эти методы особо эффективны там, где применяются жаропрочные, магнитные, нержавеющие стали, германий, кремний, ферриты и другие специальные материалы, обработка которых обычными механическими методами чрезвычайно затруднена, а в некоторых случаях просто невозможна. Особо эффективны электрофи-  [c.240]

Для более детального изучения этого вопроса были исследованы различные по химическому составу и физико-механическим свойствам металлы как в состоянии поставки, так и после их химикотермической обработки технически чистый титан ВТ1-0, хромистая нержавеющая сталь 4X13 и серый чугун СЧ18-36.  [c.124]


Смотреть страницы где упоминается термин Механическая обработка нержавеющих сталей : [c.152]    [c.355]    [c.297]    [c.301]    [c.180]    [c.202]    [c.229]    [c.182]    [c.118]    [c.131]    [c.662]   
Смотреть главы в:

Нержавеющие стали  -> Механическая обработка нержавеющих сталей



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Обработка механическая

Режимы механической обработки жаропрочных материалов и нержавеющих сталей

Сталь нержавеющая

Сталь обработка

Шустер Л. Ш., Дмитриева Э. С., Доброрез А. П. Влияние механической обработки на электрохимические свойства нержавеющих сталей



© 2025 Mash-xxl.info Реклама на сайте