Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм к преобразователя

Результаты экспериментальных исследований. Экспериментальные исследования предлагаемого исполнительного устройства (см. рис. 1) были проведены в лаборатории механизмов и машин института Механики МГУ на лабораторной модели устройства, показанной на рис. 4. Преобразователь движения этой модели размещен за ее доской-стойкой и потому на рисунке видна только та часть устройства, которая присоединена к преобразователю  [c.224]


Для каждого исполнительного механизма известны заданное движение рабочего органа и по структурной схеме машины движение ведущего звена. Сопоставляя законы движения ведомого и ведущего звеньев, определяем характер функции положения на всем интервале движения и знак передаточного отношения, по которому относим механизм к передачам, преобразователям или устройствам одностороннего прерывистого движения. Если оба звена имеют возвратное движение, то рассматриваемый механизм будет с ограниченным перемещением всех звеньев — подгруппа Б, при одностороннем движении хотя бы одного звена механизм относится к подгруппе А. В результате тип механизма определяется либо однозначно, либо выбирается из возможных вариантов в зависимости от условий работы согласно приведенным рекомендациям.  [c.229]

Механизмы двигателей осуществляют преобразование различных ii iji,ofi энергии в механическую работу. Механизмы преобразователей генераторов) осуществляют преобразование механической работ 1 и другие виды энергии. К механизмам двигателей относятся механизмы двигателей внутреннего сгорания, паровых машин, электродвигателей, турбин и др. К механизмам преобразователей относятся механизмы насосов, компрессоров, гидроприводов п др.  [c.16]

Для измерения силы тока и напряжения по методу непосредственной оценки используются приборы с измерительным механизмом (ИМ), основанным на электромеханическом преобразовании. Во всех ИМ (за исключением электростатического ИМ) входной величиной является ток. Электроизмерительные преобразователи позволяют преобразовать электрическое напряжение в пропорциональную ему силу тока, расширить диапазон применения и повысить чувствительность этих приборов путем кратного уменьшения или увеличения входной величины тока по отношению к его измеряемому значению (масштабные преобразователи) кроме того, они могут преобразовать и род тока (переменный ток в постоянный и наоборот).  [c.145]

В практике ультразвукового контроля давно замечено явление ослабления донного сигнала, когда преобразователь находится над трещиной, ориентированной вдоль направления распространения волны (рис. 1.34). Ослабление донного сигнала связано с образованием дифрагированных головных и боковых волн, свойства которых изложены выше. При распространении продольной волны вдоль трещины часть ее энергии в результате взаимодействия с краями трещины переходит в две головные L-волны, в свою очередь излучающие две боковые поперечные Т-волны, отходящие под третьим критическим углом, который для стали равен 33,5° к нормали трещины. При обратном ходе продольной волны вновь излучаются головные и боковые волны, которые могут быть приняты приемным преобразователем /, но уже под углом 90° — 33.,5° — 56,5° к нормали поверхности. Механизм образования дифракционных волн аналогичен схеме, приведенной на рис. 1.30, когда прямой преобразователь / излучает волны с торца образца вдоль свободной границы.  [c.50]


Последовательная схема прозвучивания обладает существенными недостатками, главными из которых являются сложность синхронизации перемещений и записи использование механизма разгона и перемены направления движения преобразователей, что приводит к относительно быстрому изнашиванию механизмов трудность стабилизации акустического контакта относительная сложность и большая масса механизма сканирования низкая скорость контроля (не более 15 м/ч) вследствие ограничения скорости перемещения преобразователей при многоцикловом продольно-поперечном сканировании. Подобные схемы практически не используют при разработке современных установок автоматизированного контроля.  [c.372]

Основными измеряемыми параметрами колебательных процессов в машинах и механизмах являются виброперемещение х, виброскорость X и виброускорение х. Практически всегда первичный преобразователь исходного колебательного движения в электрический сигнал измеряет только один параметр, например акселерометр — ускорение, и переход к другому параметру осуществляется путем дифференцирования либо интегрирования измеряемого сигнала аппаратурными или расчетными методами. Поэтому представляет интерес вопрос о влиянии операций дифференцирования и интегрирования на свойства стационарности и эргодичности случайного процесса.  [c.57]

На современном атомном энергоблоке требуется измерять большое число (до 10 тыс.) параметров. Значительная часть из них относится к массовым замерам однородных параметров (например, расходы по каналам канального реактора). Естественно, что следить по показаниям традиционных приборов за таким количеством параметров невозможно. Поэтому все параметры энергоблока (как массовые, так и индивидуальные) контролируются централизованно, с помощью УВК [25]. Для этого аналоговые сигналы первичных преобразователей I, 2 (рис. 12.1) через коммутаторы 3 поступают в аналого-цифровые преобразователи 4, где преобразуются в цифровую форму и вводятся в запоминающие устройства 6 электронно-вычислительных машин 5. Вывод этой информации осуществляется в удобной для оператора форме на экранах дисплеев (электронно-лучевых индикаторов ЭЛИ) 7. Кроме того, в ЭВМ вводятся дискретные сигналы (типа да — нет ) о состоянии механизмов собственных нужд, задвижек и т. п.  [c.142]

Предлагаемый метод изменения закона движения рабочего звена исполнительного устройства с помощью преобразователя движения естественно назвать кинематическим. Этот метод может оказаться весьма полезным дополнением к геометрическому методу синтеза механизмов в тех случаях, когда закон движения рабочего звена требуется сделать регулируемым для получения  [c.217]

Удовлетворение условия (13) обеспечивает получение периодических остановок звена 6 при неизменном направлении его вращения. Теоретически эти остановки должны быть мгновенными. Однако из-за наличия зазоров в кинематических парах реального механизма преобразователя движения остановки эти можно сделать длительными. Для этого воспользуемся свободой выбора дополнительной зависимости, при соблюдении которой график на возможно большем участке наиболее близко подходил к оси времени, что и способствовало бы получению продолжительных остановок звена 6.  [c.222]

Преобразование сигналов в цепях управления системы осуществляется элементами электроавтоматики и струйной техники. В качестве исполнительного механизма применен гидропривод с двухкаскадным гидроусилителем. Программа работы системы, записанная на перфоленте в двоичном коде, с помощью устройства ввода подается в бесконтактное считывающее устройство с параллельным считыванием. Из считывающего устройства сигналы поступают в блок сравнения, к которому также поступает информация от датчика обратной связи о фактическом положении исполнительного органа. В сравнивающем устройстве производится сравнение заданного и фактического перемещений исполнительного механизма и на выходе его появляется сигнал рассогласования больше , меньше , равно о действительном положении исполнительного механизма. Датчики грубого и точного отсчета представляют собой бесконтактные преобразователи угла поворота в цифровой код, дающие абсолютную величину перемещения рабочего органа.  [c.47]


Установка (рис. 4.6) снабжена тележкой 2 с автономным приводом, размещенной на направляющих фермах сварочной головки АБС. К тележке прикреплены механизмы подъема, корректировки 3 и раздвигания 4 преобразователей 5. На балконе 7 сварочного автомата размещен пульт управления 1 и блок испытательных образцов 8. В состав установки входит также бак для воды с фильтрами. Бак можно размещать как на балконе, так и вне его (например, на опорной колонне пролета цеха). Воду, воздух и электроэнергию подводят к установке с помощью тросовой подвески. Изделие размещают на роликоопорах 6 стенда.  [c.117]

Значительно снижают технические возможности и сокращают период нормальной эксплуатации неблагоприятные динамические характеристики станков. Например, неправильная отладка моментов переключения фрикционных муфт и их износ приводят не только к увеличению времени холостых ходов, но и к изменению динамических нагрузок. Не всегда соответствует техническим условиям точность исполнения цикла, что вызывает необходимость проверки теоретических циклограмм станков-автоматов кинематическими и динамическими методами. На динамические условия взаимодействия механизмов значительное влияние оказывают скорость вращения РВ и угол поворота шпиндельного блока (одинарная и двойная индексация). При диагностировании технологического оборудования с едиными валами управления выбираются диагностические параметры, несущие наибольшую информацию о работе различных целевых механизмов. Одним из таких параметров является крутящий момент на РВ, на основе которого разработаны алгоритмы и программы диагностирования механизмов подъема, поворота и фиксации шпиндельного блока подачи, упора и зажима материала суппортной группы, а также оценки работы автоматов с технологическими наладками [21, 22]. Сущность способа выявления дефектов механизмов без их разборки с помощью этого параметра заключается в том, что на РВ проверяемого автомата между приводом и кулачками управления устанавливается съемный тензометрический датчик крутящего момента, который через преобразователь соединяется с регистрирующей аппаратурой. Качество изготовления и техническое состояние различных узлов и механизмов, управляемых от одного РВ, оценивается сравнением осциллограмм крутящего момента на РВ проверяемого станка с эталонной, полученных в одном масштабе. Если величина и характер изменения кривой крутящего момента на отдельных участках циклограммы проверяемого станка не соответствуют эталонной осциллограмме, то по типовым динамограммам дефектов и дефектным картам механизмов определяются виды дефектов, причины их возникновения и способы устранения. Для удобства проверки станков в цеховых условиях эталонная осциллограмма наносится на линейку из оргстекла.  [c.105]

Регулирование скоростей крановых механизмов и получение малых скоростей для точной остановки лифтов, монорельсовых тележек, тельферов и т. п. при переменном токе обеспечивается также дополнительной подачей постоянного тока от преобразователя при включении статора открытым треугольником. В этом случае возможно изменение механических характеристик сопротивлениями цепей постоянного тока и сопротивлениями роторной цепи. Регулировочные характеристики асинхронного двигателя для этой системы, показанные на фиг. 6, обеспечивают по сравнению с реостатным регулированием хорошее регулирование скорости при спуске различных грузов и малые скорости подхода к заданному месту остановки для механизмов передвижения и подъёма.  [c.844]

Симметрично-консольные виброизоляторы рекомендуются к применению для виброизоляции машин и механизмов, работающих при постоянном числе оборотов (электродвигатели, машинные преобразователи, генераторы и т. д.) и для которых необходимо значительное снижение уровней вибрации в определенном диапазоне частот, а также для обеспечения равномерного роста степени виброизоляции в области высоких частот (рис. 28). Конструкции СКВ зарегистрированы Государственным Комитетом по делам открытий и изобретений.  [c.206]

Расчетные требования к жесткости стоек распространенных измерительных головок и преобразователей средств линейных измерений приведены в [66]. Для оценки виброустойчивости измерительных механизмов необходимо знать жесткость их упругих элементов. В табл. 5 приведены расчетные зависимости для некоторых распространенных упругих элементов.  [c.119]

Крупнейшим вкладом в науку о машинах были труды Г. Монжа, относящиеся к концу XVIII и началу XIX в. Выдающийся геометр Монж поставил геометрию на службу инженерным наукам, создав начертательную геометрию —этот изящнейший аппарат кинематики машин и механизмов. Он развил идею о механизмах как преобразователях движения отдельных звеньев. Из выдающихся ученых, внесших значительный вклад в теорию машин, мы должны указать на А. Бетанкура. Составленные им совместно с Ланцем таблицы механизмов пора.жают своим богатством видов простейших машин и механизмов.  [c.130]

Устройство состоит из феррографа прямого считывания, двух мембранных насосов для масла и растворителя, трех перекрывающих клапанов для контроля потока, преобразователя и микропроцессора, который служит для контроля работы всего устройства и выдачи информации о состоянии механизма. Сам феррограф выполнен с использованием источника света и оптических волокон, по которым информация, характеризующая число мелких и крупных частиц, подается к преобразователю, где оптический сигнал с помощью фотоприемников преобразуется в электрический и поступает для дальнейшей обработки на микропроцессор. Такая система позволяет получать информацию о полной концентрации частиц изнашивания и характеризовать распределение частиц по размерам.  [c.192]

Пьезоэлектрические преобразователи применяют для измерения параметров абсолютных колебаний нев-ращающихся частей механизмов. Пьезоэлектрические преобразователи обладают высокими метрологическими параметрами, широким амплитудным и частотным диапазоном, простотой конструкций, высокой надежностью и сравнительно низкой стоимостью. Основными недостатками пьезоэлектрических преобразователей являются высокое выходное сопротивление и низкая помехозащищенность. В значительно меньшей степени эти недостатки свойственны пьезоэлектрическим преобразователям, относящимся к классу параметрических преобразователей.  [c.605]


Приборы с зубчатой передачей. В производственных условиях я к измерительных лабораториях широко используют для абсолютлы. измерений индикаторы или индикаторные измерительные гп. ювки, называемые преобразователями. Все индикаторы. можно разде.тигь два типа индикаторы часового типа с зубчатой передачей) и р .1 чй.ю но-зубчатые. Механизм передачи индикатора часового типа состоит только из зубчатых пар. Общий вид и принцип дейсгвия инд.гжаторд с иеной деления 0,01 мм показан на рис. 10.7, Зубчатая рейка 1 выходится в зацеплении с зубчатым колесом 2. Возвратно-поступательное перемещение измерительного стержня / преобразуется в круговое  [c.121]

По степени автоматизации процессов средства контроля подразделяют на следующие 1) приспособления (механизированные с несколькими универсальными головками и автоматизированные светофорные с различными датчиками), в которых операции загрузки и съема осуществляются вручную 2) полуавтоматические системы, в которых операция загрузки осуществляется вручную, а остальные операции — автоматически 3) автоматические системы, D которых весь цикл работы автоматизирован 4) самонастраивающиеся (адаптивные) автоматические системы, в которых автоматизированы циклы работы и настройки, или системы, которые могут приспособливаться к изменяющимся условиям среды. По воздействию па технологический процесс автоматические средства подразделяют на средства пассивного контроля (контрольные автоматы), осуще-ствляюа ие лишь рассортировку деталей на группы качества без непосредственного участия человека, и средства активного контроля, в которых результаты контроля используются для автоматического управления производственным процессом, вызывая изменение его параметров п улучшая показатели качества. Действие автоматизированных приспособлений, контрольных автоматов п средств активного контроля основано на использовании различного рода измерительных преобразователей. Измерительный первичный преобразователь (ГОСТ 16263—70) —это средство измерения или контроля, предназначенное для выработки сигнала в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Измерительный преобразователь как составной элемент входит в датчик, который является самостоятельным устройством и кроме преобразователя, содержит измерительный шток, рычаг с наконечником, передающий механизм, элементы настройки и др. Остальные элементы электрической цепи измерительной (контрольной) системы конструктивно оформляют в виде отдельного устройства электронного блока, или электронного реле). Наибольшее распространение получили измерительные (контрольные) средства с электроконтакт-нымн, пневмоэлектроконтактнымп, индуктивными, емкостными, фотоэлектрическими, радиоизотопными и электронными преобразователями.  [c.149]

На рис. 8.7 показана схема устройства манометра абсолютного давления МАС-П с пневмосиловым преобразователем. Прибор состоит из измерительного блока I, пневмосилового преобразователя 4 и пневматического усилителя мощности 7. Измерительный блок включает два сильфона с известной эффективней площадью (0,4 или 2 см ). Из одного сильфона 12 воздух откачан, сам сильфон герметизирован. В полость другого сильфона 11 подается измеряемое давление р. Под действием последнего и упругих сил сильфонов к рычагу 2 будет приложено пропорциональное этому давлению усилие Р. Это усилие через рычажный передаточный механизм 2 и 5 автоматически уравновешивается усилием Ро.с от сильфона обратной связи 10, полость которого соединена с магистралью выходного давления, поступающего из усилителя мощности 7, к которому подводится с помощью канала 9 сжатый воздух под давлением (0,14 0,014) МПа, контролируемый манометром 8. Усилитель мощности формирует выходное давление под воздействием управляющего сигнала сжатого воздуха в линии сопла, которое зависит от взаимного положения сопла б и заслонки 5 индикатора рассогласования положение заслонки определяется положением рычага 2.  [c.160]

Конструктивно линия выполнена в виде единого устройства, сл онтирован-ного на специальном фундаменте. Механизмы расположены в следующей последовательности стол загрузчика с карманом для металла, подготовленного к контролю транспортные ролики тянущие ролики стол дефектоскопии с четырьмя блоками пре- образователей приборов механизм сортировки с автоматом для контроля диаметра и карманами для годного и бракованного металла. Электронные измерительные стойки приборов установлены на специальной площадке и соединены с блоками преобразователей соединительными кабелями. Управление механизмами линии производится с пульта, расположенного в нижней части стола дефектоскопии. Устройства электроавтоматики расположены в отдельном mKa jiy.  [c.327]

Дефектоскоп состоит из приводного механизма сменных измерительных блоков и внешнего записываюш,его устройства. Приводной механизм включает электропривод, ведущую и ста-билизируюш,ую головки. Ведущая головка является преобразователем вращательного движения в поступательное благодаря установке обрезинен-ных роликов под углом 30° к оси трубы. Стабилизирующая головка отличается от ведущей только продольным расположением роликов. Приводной механизм обеспечивает обратное движение при подходе к краю трубы. Блок контроля сплошности диэлектрических покрытий содержит преобразователь напряжения, высоковольтный трансформатор, умножитель напряжения и скользящий контакт в виде кольцевой провшючной оболочки, надетой на корпус блока. Наличие трещин обнаруживается по искровому разряду между скользящим контактом и металлом трубы, записываемому самописцем.  [c.329]

Так как вибрационно-диагностический и шумодиагностический методы, относящиеся к пассивным акустическим методам, служат для диагностирования работающих механизмов, их исследование выходит за рамки этой книги. Акустико-эмиссионный метод применяют в качестве средства исследования материалов, конструкций, контроля изделий (например при гидроиспытаниях) и диагностирования во время эксплуатации. Важными преимуществами этого метода перед другими является то, что он реагирует только на развивающиеся, действительно опасные дефекты, а также возможность проверки больших участков или даже всего и,зделия без сканирования его преобразователем. Основной его недостаток как средства контроля — трудность выделения сигналов, вызываемых развивающимися дефектами, на фоне помех от кавитационных пузырьков в жидкости, подаваемой в объект при гидроиспытаниях, от трения в разъемных соединениях и т. д.  [c.103]

Наиболее предпочтительной является третья схема прозвучивания, так как в этом случае существенно упрощается конструкция механизма сканирования и уменьишется число каналов электронного блока. Кроме того, такая схема прозвучивания увеличивает надежность контроля за счет многократного проззу-чивания каждой зоны преобразователями, установленными под разными углами к пшу и работающими в различных режимах, а также позволяет оценивать характер дефекта, осуществлять 100 %-ный охват толщины сварного niea за один проход.  [c.373]

Деталь, подлежащая измерению, поступает по конвейеру 6 и, пройдя через механизм поштучной выдачи, перемещается до жесткого упора под захватом 5 конвейера (позиция Г). Каретка 9 с четырьмя парами захватов опускается, захваты сводятся и охватывают тормозной барабан с зазором I—2 мм, после чего каретка поднимается, поворачивается на 90° против часовой стрелки и вновь опускается. При этом измеряемая деталь переносится на приемные упоры измерительной позиции //. При правильном предварительном базировании упоры опускаются, деталь устанавливается на шпиндель 10 и окончательно базируется и зажимается на нем. К детали подводятся измерительные наконечники индуктивных преобразователей, и шпиндель с деталью поворачивается на ,5—2 оборота. Сигналы, соответствующие отклонениям измеряемых параметров, поступают в электронную схему автомата, в которой показания по каждому параметру сравниваются с заранее настроенными значениями Если все показания оказываются в до пустимых пределах, выдается коман да Годная деталь , а в случае пре вышения хотя бы одной границы од ного из параметров — команда Брак  [c.42]


При равномерном движеиии выпуклого участка (волны) от одного конца тела 1 к другому каждая точка (сечение) х тела оппсывает некоторую плоскую траекторию 3 с заостренной вершиной (назовем ее волпоидой) и совершает шаговое перемещение на небольшой шаг hx в направлении двин ения волиы. Таким образом, этот гусеничный механизм выступает в роли преобразователя равномерного движения в шаговое. Как будет показано, это свойство механизма, заимствованное у живой нри-роды, позволило создать ряд новых шаговых механизмов и технических устройств,  [c.25]

Испытуемый образец 13 (рис. 45) зажимают в захваты 12 и 14. Захват 14 находится на упругом элементе датчика силы 20, имеющем тензорези-сторные преобразователи. Активный захват 12 жестко соединяется с фланцем штока 9 и упругой поперечиной 11. Жесткость упругой поперечины в направлении оси машины мала, а в направлениях, перпендикулярных оси машины, — значительна. На фланец штока 9 устанавливают сменные грузы 10 для изменения частоты колебаний. Шток 9 соединяется с якорем 8 электромагнитного возбудителя 6 колебаний, корпус которого поперечиной 7 жестко связан с колоннами 3 машины. Якорь 8 тягами 5 соединяется с нижней ветвью пружины 4 статического нагружения испытуемого образца. Верхняя ветвь пружины связана с червячно-винтовым механизмом 1 статического нагружения, приводимым в движение электродвигателем. Верхняя траверса 2, колонны 3 и нижняя траверса 17 образуют жесткую подвижную раму машины, так как колонны могут перемещаться в направляющих 15, имеющих цанговые зажимы. В нижних частях колони 3 сделана винтовая нарезка. Эти части взаимодействуют с червячно-винтовым приводом 16. Направляющие 15, привод 16 и упругий элемент датчика 20 силы расположены на массивной станине 18, которая прикреплена к массивному бетонному блоку 19. Блок 19 покоится на четырех спиральных пружинах, размещенных в подкладках, устанавливаемых на пол лаборатории. Установка подвижной рамы Д сти-  [c.126]

Образец 2 (рпс. 8) в виде полоски зажимают в захватах 1 и 3, устанавливают его в стакан и помещают в криокамеру с охлажденным спиртом. Стакан соединен с направляющей механизма нагружения и при включении электродвигателя 4 получает перемещение вниз. Движение от электродвигателя передается через червячную пару, электромагнитную муфту, зубчатые колеса и ходовой винт, связанный с направляющей. Верхний захват 3 через серьгу, тягу и подвеску связан с преобразователем силы. При движении стакана с нижним захватом 1 к образцу постепенно прикладывается нагрузка, которая воспринимается упругим элементом 5 преобразователя  [c.152]

Передаче возбужденного потока препятствуют внешние и внутренние сопротивления. К первым относят сопротивления передаточной цепи, механических звеньев испытательной машины или установки, а также сопротивления объекта испытания. Ко вторым относят сопротивления (проводимости), присущие механизму преобразования и влияющие на значение возбужденного потока под нагрузкой, характеризующие степень его жесткости. Внутренние сопротивления целесообразно присоединять к внешним и, в зависимости от их характера и степени влияния на преобразователь, рассматривать последний как идеализи-  [c.194]

Фотоэлектрические преобразователи разработаны на базе механизма пружинно-ипгической головки, в которую встроен блок соответствующих фотосопротивлений. Работа преобразователя осуществляется следующим образом. При перемещении измерительного стержня 1 (рис. 45) поворачивается угловая подвеска 2, растягивая пружину 4, на которой укреплено зеркальце. Это приводит к повороту зеркала на угол, пропорциональный перемещению измерительного стержня. На зеркало проектируется луч света от освети-  [c.98]

Преобразователи импульсов состоят из дисков А к Б, устанавливаемых на валы контролируемого механизма КМ, на наружной цилиндрической поверхности которых нанесен магнитный (никелево-кобальтовый) слой. На дисках записываются магнитные риски или же синусоидальные сигналы с определенным целым числом волн по окружности. В корпусах преобразователей укреплены магнитные головки МГ-А и МГ-Б, служащие для записи и считывания импульсов на дисках. Электронно-измерительное устройство (ЭИУ) представляет собой электронный фазометр, измеряющий сдвиг фаз между импульсами, поступающими с преобразователей. Чувствительность фазометра зависит от количества магнитных импульсов на диске А или Б и передаточного числа контролируемого механизма. Магнитоэлектрический кинема-тометр модели МЭК-1СО может работать, производя измерение абсолютным или разностным методом,  [c.273]

Такой привод может обслуживать большое число зажимных точек, иногда значительно удаленных друг от друга. Привод состоит из преобразователя давления с аппаратурой и подключаемых к нему рабочих гпдроцил-индров, воздействующих на зажимные механизмы.  [c.111]

Гидравлическая и пневматическая системы автоматизации машин основаны на применении гидро- и пневмомеханизмов, в которых энергия от основного двигателя машины к рабочим органам передается посредством включенного в систему рабочего тела (жидкости, газа). Механическая энергия двигателя преобразуется с помощью насоса в потенциальную или кинетическую энергию рабочего тела. Насос соединяется трубопроводом с вторичным преобразователем энергии — гидро-или пневмодвигателем, который совершает обратное преобразование энергии рабочего тела в механическую энергию ведомых звеньев (поршня — штока, плунжера, лопасти —вала), которые и приводят в движение рабочие органы машины. Автоматическое управление преобразователями энергии, т. е. периодическое включение и выключение их, производится специальными механизмами управления (клапанами, золотниками и др.), потребляющими незначительное количество энергии.  [c.15]


Смотреть страницы где упоминается термин Механизм к преобразователя : [c.64]    [c.280]    [c.260]    [c.266]    [c.90]    [c.475]    [c.154]    [c.263]    [c.358]    [c.180]    [c.211]    [c.114]    [c.92]    [c.24]    [c.94]    [c.109]   
Механизмы в современной технике Кулисно-рычажные и кривошипно-ползунные механизмы Том 2 (1979) -- [ c.237 , c.239 ]



ПОИСК



Механизм кулисно-рычажный преобразователя

Миронов, Е. Г. Нахапетян Исследование динамики механизмов позиционирования с помощью оптических преобразователей

Промежуточные звенья механизмов автоматического управления (преобразователи)



© 2025 Mash-xxl.info Реклама на сайте