Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные сведения из теории дифференциальных уравнений

Далее излагаются элементы теории дифференциальных уравнений и уравнений в конечных разностях в объеме, необходимом для того, чтобы в дальнейшем не отсылать читателя к многочисленным источникам, сообщающим эти сведения в различном духе и с использованием различных обозначений. Здесь основное внимание уделяется вопросам решения уравнений с периодическими коэффициентами и уравнений в конечных разностях (глава 2).  [c.8]


Все результаты в книге приведены с полными доказательствами, причем используются лишь основные сведения из функционального анализа и теории дифференциальных уравнений.  [c.7]

Ввиду сложности (а чаще невозможности) получения точных решений основных уравнений НЛП для произвольной функции р(г) широкое распространение получили приближенные методы. Эти методы можно разбить на две группы. Первая объединяет стандартные методы теории дифференциальных уравнений соответствующего типа метод неопределенных коэффициентов, представления в виде степенных рядов, разложения по малому параметру, сведения дифференциальных уравнений к интегральным с последующим решением последних и др. [2, 158, 162, 180, 181]. Другая группа в своей основе содержит физические предпосылки, позволяющие заменить НЛП каскадным соединением отрезков однородных ЛП, число которых в предельном переходе увеличивается до бесконечности [9, 182, 183]. Характерным для обеих групп является возможность получения решения с любой наперед заданной точностью. Именно в этом смысле перечисленные методы могут быть названы точными в пределе.  [c.99]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]


Итак, можно считать, что построен основной итерационный процесс, который сводится к многократному решению уравнений вида (26.4.10). Это утверждение имеет условный характер, так как принимается, что известно решение системы (26.4.9). Справедливость такого предположения мы обсудим в 26.6, а пока заметим, что (26.4.10) представляет собой систему дифференциальных уравнений с двумя независимыми переменными 5i. 5а. так как уравнения (26.4.10) выражают условия на лицевых поверхностях, т. е. равенства, получаюш,иеся при С = — 1, и входящие в них неизвестные величины (26.4.4) представляют собой произвольные функции интегрирования (по С) и также зависят только от 5i, la- Таким образом, основным итерационным процессом в известном смысле решается основная проблема теории оболочек — сведение трехмерных уравнений теории упругости к двумерным уравнениям.  [c.399]

Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в част-  [c.185]

Для чтения этой книги необходимо знание основ термодинамики. Из математики предполагается свободное владение векторным анализом и тензорной алгеброй. Что касается так называемой математической физики (теории линейных дифференциальных уравнений в частных производных второго порядка), то все основные необходимые сведения и решения основных задач даются в книге параллельно с изложением соответствующих физических вопросов.  [c.11]

Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]

Предлагаемая вниманию читателей мшопрафия посвящена аналитической теории тепло- и массопереноса в неподвижных средах и дисперсных системах. Для того чтобы решения системы дифференциальных уравнений тепло- и массопереноса могли быть использованы в других процессах переноса, все они даны в критериальных соотношениях с использованием методов теории подобия (теория обобщенных переменных). Таким образом, монография по сути дела является аналитической теорией термодинамики неравновесных состояний. Поскольку Л итера1тура по термодинамике необратимых процессов крайне бедна, то пер1вая глава монографии посвящена основным сведениям из термодинамики явлений тепло- и массопереноса.  [c.4]


Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

См. fl.Il, стр, 25, 30—36, 39-—40 [соответственностр. 37, 43—50, 54 русского перевода], Замечание. Основное ( отношение, связывающеё кривизну с изгибающим моментом, впервые было получено Яковом Бернулли, хотя ему не удалось найти правильное значение п<х тоянной, входящей в это соотношение. Тем не менее его работа должна рассматриваться как первый вклад в решение задач о больших прогибах балок. Следуя совету Даниила Бернулли, Эйлер вновь вывел дифференциальное уравнение линии прогибов и приступил к решению различных задач об эластике см. [1.1J, стр. 27 стр. 39 русского перевода], 1.2], т. 1, ip. 30 и 34, а также 1.3], стр. 3 [стр. 17 русского перевода]. В I6.20] приведена известная статья Эйлера о линиях прогиба. После этого задачей об эластике занимался Жозеф Луи Лагранж (1736—1813), выдающийся итальянский математик ), впервые сформулировавший принцип возможной работы и сделавший весьма существенный вклад в динамику. Он рассмотрел консольную балку с нагрузкой на незакрепленном конце (см. 1.1], стр. 39—40 стр. 54 русского перевода], и [1.2], т. 1, стр. 58—61, а также статью Лагранжа [6.21]) краткая биография Лагранжа приведена в[6.4] на стр. 133 и в 6.5] на стр. 250. К числу первых ученых, занимавшихся теорией упругости, относится и Джиованни Антонио Амадео Плана (1781—1864), племянник Лагранжа, исправивший ошибки в работах Лагранжа по теории упругих кривых (см. [1,2], т. I, стр. 89—90, а также работу Плана [6,22]) биографические сведения о нем можно найти в [6.5]. Макс Борн в своей диссертации 6.23] исследовал эластику при помощи вариационных методов (см. [1.13], стр. 927—928 и 932  [c.553]

Во второй части излагаются кинематика и теория деформаций сплошной среды в эйлеровом и лагранжевом описаниях, формулируются основные законы динамики и термодинамики, выводятся дифференциальные уравнения движения среды, обсуждаются возможные типы начальных и граничных условий. Рассмотрены вариационные принципы в механике жидкости и газа и в теории упругости, методы теории размерностей и подобия. Теоретический материал сопровождается под-боркой задач с решениями в конце каждого параграфа. Приведены также сведения об ученых, создававших механику сплошной среды.  [c.3]

Мы предполагаем у читателя предварительное знакомство с материалом на нескольких уровнях. Прежде всего, мы без оговорок используем, предполагая хорошую осведомленность, результаты линейной алгебры (включая жордановы нормальные формы), дифференциальное и интегральное исчисление для функций многих переменных, основы теории обыкновенных дифференциальных уравнений (включая системы), элементарный комплексный анализ, основы теории множеств, элементарную теорию интеграла Лебега, основы теории групп и рядов Фурье. Необходимые сведения следующего, более высокого уровня рассматриваются в приложении. Большая часть материала приложения включает материал такого типа, а именно, в приложении содержатся сведения из стандартной теории топологических, метрических и банаховых пространств, элементарная теория гомотопий, основы теории дифференцируемых многообразий, включая векторные поля, расслоения и дифференциальные формы, и определение и основные свойства римановых многообразий. Некоторые темы используются лишь в отдельных случаях. Последний уровень необходимых знаний включает основания топологии и геометрии поверхностей, общую теорию меры, ст-алгебры и пространства Лебега, теорию гомологий, теорию групп Ли и симметрических пространств, кривизну и связности на многообразиях, трансверсальность и нормальные семейства комплексных функций. Большая часть этого материала, хотя и не весь он, также рассматривается в приложении, обычно в менее подробном виде. Такой материал может быть принят на веру без ущерба для понимания содержания книги, или же соответствующая часть текста может быть без большого ущерба пропущена.  [c.15]

IB этой области течения не решена в удовлетворительном виде до сих пор основная проблема — проблема формулирования соответствующих дифференциальных ура1внений и граничных условий, описывающих течение газа. Для некоторой части этой области, примыкающей к области континуума, в ряде работ предполагалось возможным использование уравнений Навье-Стокса (или их предельного случая — уравнений Л. Прандтля для пограничного слоя) в сочетании с граничными условиями, предполагающими скольжение газа (Л. 5—9]. Однако результаты появившихся в последнее В1ремя опытных исследований показали в большинстве случаев непригодность полученных таким путем решений. Аналитические решения различных авторов плохо согласуются друг с другом и с экспериментом. Такое положение в теории объясняется, в известной мере, отсутствием детальных опытных сведений об этой области течения. Имеющиеся экспериментальные данные весьма ограниченны и очень малочисленны. На графиках рис. 1 г оказаны диапазоны всех известных в настоящее время исследований сопротивления и теплообмена в промежуточной области, между континуумом и свободно молекулярным течением.  [c.463]



Смотреть страницы где упоминается термин Основные сведения из теории дифференциальных уравнений : [c.35]    [c.252]   
Смотреть главы в:

Механика гибких стержней и нитей  -> Основные сведения из теории дифференциальных уравнений



ПОИСК



Основные Основные сведения

Основные дифференциальные уравнения

Основные сведения

Основные сведения из теории

Теории Уравнения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте