Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромирование износостойкое

Гальванический участок предназначен для восстановления деталей электролитическим осаждением металла на изношенные поверхности. На участке обычно выполняют следующие гальванические процессы хромирование износостойкое и декоративное, железнение, меднение, цинкование, никелирование и фосфатирование. На участок детали поступают партиями со склада деталей, ожидающих ремонта, или с других производственных участков. Детали, требующие восстановления размеров, поступают после предварительного шлифования со слесарно-механического участка. Туда же они возвращаются после гальванического наращивания на окончательную механическую обработку. Детали, отдельные поверхности которых подлежат меднению для защиты от цементации, поступают также со слесарно-механического участка, а после меднения направляются на термический участок. Детали, проходящие восстановление декоративных покрытий, доставляются с участка дефектации или ре-  [c.307]


Хромирование износостойкое на толщину слоя 50 мк  [c.501]

Катодом служит покрываемое изделие, анодом — металлы в качестве электролита используются растворы солей, осаждаемого металла. Осаждают либо хром, либо железо и соответственно процессы называют хромированием и осталиванием. Толщина хромового покрытия 0,3—0,5 мм при высокой твердости и большой износостойкости слоя, поэтому хромирование применяют при ремонте деталей с небольшим износом. Осталивание позволяет наносить слой 2—3 мм, а скорость процесса в 10—30 раз выше, чем при хромировании. Износостойкость осажденного слоя стали можно повысить последующей цементацией и хромированием.  [c.113]

Цинкование защитное слой 36 3 мк. Хромирование износостойкое  [c.85]

Для снижения затрат на калибры стремятся увеличить их износостойкость. В СССР изготовляют скобы листовые и пробки, оснащенные твердым сплавом (ГОСТ 16775—71 — ГОСТ 16780—71), износостойкость которых в 50—150 раз выше по сравнению с износостойкостью стальных калибров и в 25—40 раз выше по сравнению с износостойкостью хромированных калибров при повышении стоимости калибров только в 3—5 раз.  [c.241]

Проведенные в дальнейшем исследования влияния шероховатости поверхности на трение и изнашивание сводились к установлению так называемой оптимальной шероховатости применительно к конкретным трущимся сопряжениям. Покажем это на некоторых примерах. Исследования по влиянию чистоты механической обработки поверхности хромированного зеркала цилиндра на износ поршневых колец показали, что кривая зависимости износа поршневого кольца от класса чистоты обработки цилиндра имеет минимум. При этом установлено, что наибольшая износостойкость кольца будет в том случае, когда чистота обработки поверхности зеркала цилиндра соответствует У9, что благоприятствует жизнеспособности масляной пленки [94].  [c.7]

Основы надежности закладываются конструктором в содружестве с технологом при проектировании. Заданная надежность обеспечивается в процессе производства применением прогрессивной технологии. В эксплуатации заданная функция надежности реализуется выполнением всех правил эксплуатации. Надежность изделия тесно связана с его долговечностью. Эффективных мер повышения долговечности много, в их числе закалка стальных деталей при нагреве т. в. ч., дающая возможность увеличить износостойкость зубчатых передач в 2—4 раза хромирование трущихся деталей дает возможность увеличивать срок службы по износу в 3—5 раз и др. Хорошая система смазки является необходимым условием обеспечения надежности и долговечности машин. Широкое применение в машиностроении т. в. ч. для упрочнения деталей машин с целью повышения их ресурса объясняется многими их преимуществами по сравнению с другими видами термической обработки деталей. Однако реализовать эти преимущества возможно только при условии правильного установления параметров закалки. Важнейшими из них являются глубина закалки х , твердость HR , зона перехода закаленной части детали к незакаленной, частота тока и скорость процесса упрочнения. Теоретически глубина упрочнения трущейся детали должна равняться предельному допуску ее износа. Однако практически при ее определении следует учитывать условия работы детали, ее геометрические размеры и материал. Опыт применения т. в. ч. показывает, что при невыполнении этих условий закалка при индукционном нагреве приводит к отрицательным результатам. В тех случаях, когда зона перехода закаленной части детали к незакаленной совпадает с наиболее опасным сечением и местом концентрации напряжений, в этих зонах первоначально возможно появление микротрещин, а затем их развитие под действием знакопеременных нагрузок и усталостный излом. Аналогичные результаты могут быть и при недостаточной глубине закаленного слоя.  [c.206]


Высокая эффективность способа как средства повышения усталостной прочности деталей. Срок службы многих деталей, работающих при ударном и переменном нагружении, которые лимитируют работу машин, вследствие поверхностного упрочнения увеличивается в несколько раз сокращается потребность в запасных частях, резко снижается выход машин из строя вследствие усталостного разрушения деталей. При равной или даже несколько повышенной долговечности, после упрочнения можно повысить допустимые нагрузки, в первую очередь, для деталей, имеющих концентраторы напряжений (канавки, галтели, отверстия). Применение этого способа упрочнения расширяет возможности конструкторов в использовании более технологичных и конструктивных решений (например, галтелей малого радиуса вместо переменного или большого радиуса), в выборе материалов для деталей, сварных конструкций и гальванических покрытий, повышающих износостойкость и т. д. К таким покрытиям относится, например, хромирование, которое без поверхностного наклепа снижает усталостную прочность. Наряду с усталостной прочностью во многих случаях повышается износостойкость деталей и стабилизируются по своей прочности неподвижные посадки.  [c.94]

Износостойкое хромирование. Хром стоек против действия влажной атмосферы, азотной кислоты и растворов щелочей длительное время сохраняет свой цвет и -блеск цвета побежалости па хроме появляются только при температуре свыше 400° С.  [c.392]

Толщина покрытий при износостойком хромировании  [c.393]

Изнашивание плунжерных пар производят абразивные частицы, превышающие величину зазора в них. Радиальный зазор новых плунжерных пар равен 0,5—1 мк радиальный зазор при их выбраковке 3—4 мк. Следовательно, современные фильтры, пропускающие частицы размером 3—4 мк, не могут предохранить топливную аппаратуру от изнашивания. В условиях абразивного изнашивания износостойкость пар с хромированными плунжерами в 2—3 раза выше износостойкости серийных пар (сталь ХВГ).  [c.91]

В последнее время получило распространение пористое хромирование. Оно наиболее благоприятно прн работе деталей со смазкой. Поры в хромовом покрытии служат аккумулятором смазки, чем увеличивается износостойкость трущихся пар. При чисто абразивном изнашивании его не применяют.  [c.91]

Семенюк 11. М. Износостойкость хромированных деталей сельскохозяйственных. машин. Машгиз, 1953, с. 399—406.  [c.112]

Главным направлением по борьбе с износом и уменьшением трения в машиностроительных отраслях техники было повышение твердости трущихся поверхностей деталей машин. В промышленности разработано большое число методов повышения твердости деталей, работающих на износ и трение цементация, азотирование, хромирование, цианирование, поверхностная закалка, наплавка твердыми материалами и др. Многолетний опыт свидетельствует, что это направление позволило в большой степени повысить надежность и долговечность трущихся деталей машин. Так, электролитическое хромирование цилиндров двигателей внутреннего сгорания не только повышает износостойкость палы цилиндр—поршневое кольцо в 4—5 раз ло сравнению с чугунными цилиндрами, но и в большой степени снижает потери на трение в цилиндро-поршневой группе двигателей. Без азотирования или цементирования зубчатых передач в настоящее время нельзя обеспечить надежную и длительную работу тяжелонагруженных редукторов. Таким образом, разработанные методы повышения твердости трущихся деталей явились мощным орудием в деле увеличения износостойкости деталей, а следовательно и срока службы машин.  [c.205]

Действительно, если технологический процесс нанесения покрытия построен таким образом, что при его регулировании удается получать покрытия с толщиной слоя, колеблющейся в пределах 3 мк, или если в установленных технических условиях приведены рекомендуемые размеры толщины слоя с точностью до 3 мк, то для текущего контроля качества этих покрытий можно пользоваться методикой, дающей результаты с точностью не менее +1,5 мк. Более жесткие допуски по толщине слоя имеют место лишь в редких случаях, да и то главным образом при применении износостойких покрытий, как, например, при хромировании измерительного и режущего инструмента 1-го класса точности. Но в этих случаях обычно контролируют уже не толщину слоя покрытия, а окончательные размеры самого инструмента с помощью оптиметров, миниметров, пассаметров и других средств измерения.  [c.540]


Увеличение срока службы деталей при механическом изнашивании достигается повышением износостойкости материала, которое обеспечивается главным образом путем повышения твердости поверхности металла. Для этой цели применяются объемная закалка, поверхностная закалка токами высокой частоты, химико-термическая обработка поверхности в виде цементации, азотирования, диффузионного хромирования, алитирования и борирования. В ряде случаев достаточно электролитического хромирования поверхности.  [c.264]

Допускается хромирование, азотирование или наплавка твердым сплавом рабочих поверхностей калибров для повышения износостойкости.  [c.592]

Многие трущиеся детали работают в режиме избирательного переноса. Это особенно проявляется для трущихся пар сталь — бронза, хромированная сталь — бронза при применении смазок ЦИАТИМ-201 или ЦИАТИМ-203. В условиях избирательного переноса в десятки раз повыщается износостойкость подвижных сочленений узлов шасси.  [c.207]

Химико-термическая и термическая упрочняющая поверхностная обработка позволяет резко изменить качество поверхности деталей машин и обеспечить требуемые эксплуатационные свойства (износостойкость, усталостная прочность, жаростойкость и др.), поэтому ее применение оказывается не только эффективным, но в ряде случаев единственно возможным средством для повышения надежности работы деталей. Расширение области термической и химико-термической упрочняющей поверхностной обработки стало возможным после того, как была усовершенствована технология процессов поверхностной закалки, цементации, азотирования, цианирования, а также в результате разработки новых процессов диффузионного насыщения поверхности сплавов (алитирование, диффузионное хромирование, борирование, сульфоцианирование и др.).  [c.283]

Хромирование. Хромирование может быть декоративное, антикоррозионное и износостойкое. Если хромирование применяют для защиты от коррозии, то стальные заготовки подвергают многослойному покрытию, например, слоем меди толщиной 0,03—0,04 мм, слоем никеля толщиной 0,015—0,20 мм и слоем хрома толщиной 0,001—0,0015 мм. Подслои также необходимы, если детали работают на износ в коррозионных средах.  [c.328]

При износостойком хромировании слой толщиной до 0,1 — 1,0 мм наносят непосредственно на стальную поверхность. Для восстановления номинальных размеров машин в процессе ремонта и упрочнения при изготовлении новых деталей применяют главным образом износостойкое хромирование. Хромовые покрытия снижают коэффициент трения сопряженных пар, что уменьшает теплообразование при трении. В результате износостойкость хромированных деталей возрастает в 5—10 раз и более.  [c.328]

При обработке отливок следует обратить внимание на следующие способы, дающие при соответствующих условиях повышение надежности и наибольший технико-экономический эффект дробеструйная обработка стальных деталей, работающих с переменными нагрузками покрытие алюминием стальных и чугунных отливок для повышения стойкости против окисления при высоких температурах диффузионное хромирование стальных отливок с целью увеличения коррозионной стойкости поверхностная закалка (газовая или индукционная) стальных или чугунных отливок, подвергающихся истиранию или ударам пористое хромирование рабочих поверхностей отливок из алюминиевых сплавов, подвергающихся износу электролизное антикоррозионное оксидирование отливок из сплавов алюминия металлизация распылением (цинком, алюминием, латунью, медью, сталью и т. д.), увеличивающая коррозионную стойкость и износостойкость.  [c.369]

Электролитическое нанесение металлических покрытий применяют для полу чения защитных коррозионно-стойких или жаростойких покрытий, износостойких слоев и пр Таким способом можно производить хромирование, никелирование и т. д.  [c.285]

На рис. 87, а, б приведены результаты испытания исследуемых сплавов на износостойкость до и после хромирования. Сплавы до хромирования изучали после обработки их по принятой технологии вакуумный отжиг, вакуумный отжиг с последующим гальваническим хромированием или кадмированием, вакуумный  [c.200]

Изнашивание значительно уменьшается 1ри термической и химико-термической обработке детален (поверхностной закалке, цементации, цианировании, азотировании, диффузионном хромировании, борировании, алитировании, силицнровании, сульфидировании и др.), нгшлавке и плазменном напылении деталей твердыми сплавами, а также при гальваническом нанесении твердых покрытий (хромировании). Износостойкость чугунных деталей повышают создание ,) на поверхностях грения отбеленной корки.  [c.163]

Наклеп, возникающий в результате обработки резанием, уменьшает износ поверхностей в 1,5—2 раза. Влияние микротвердости поверхностного слоя на его износ приведено на рис. 45, г. При высокой микротвердости (в результате перенаклепа) износ возрастает из-за шелушения частиц металла. Износ уменьшается значительно при термической и химико-термической обработке деталей (поверхностной закалке, цементации, цианировании, азотировании, диффузионном хромировании, борировании, алитировании, силицирова-нии, сульфидировании и др.), наплавке и плазменном напылении деталей твердыми сплавами, а также гальваническом нанесении твердых покрытий (хромировании). Износостойкость чугунных деталей повышают созданием на поверхностях трения отбеленной корки.  [c.122]

В тяжелонатруженных опорах ва.лам, независимо От твердости подшипникового материала, целесообразно придавать повышенную твердость посредством закалки с нагревом ТВЧ НКС 55 — 58), цементирования, сульфоцианировашш НКС 58-60), диффузионного хромирования НУ 800 — 1000), азотирования НУ 100—1200). Наряду с повышением износостойкости эти способы увеличивают выносливость и снижают концентрацию напряжений на участках переходов и расположения смазотаых отверстий.  [c.388]


Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготовляют из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.  [c.213]

Как было отмечено pdHee получаемые химическим восстановлением никелевые покрытия могут быть использованы для повышения износостойкости новых деталей, а также д тя восстановления работоспособности изношенных деталей, зашиты изделий от коррозии Налболее широко применяют повышение износостойкости пресс форм с помощью химического никелирования Применение его наиболее целесообразно для штампов и пресс-форм сложной конфигурации, где хромирование весьма затруднено  [c.32]

Деталям должна быть придана достаточная износостойкость. Это требов-ание выполняется применением специальных матери-аж)в, различными способами поверхностного упрочнения, например закалкой с нагревом токами вьюокой частоты, цементацией в газовой среде, наклепом дробью, накаткой шариками или роликами, хромированием.  [c.198]

Хонингование шлицевых отверстий в зубчатых колесах может осуществляться также головками, в которых бруски расположены вдоль оси имея ширину алмазоносного слоя 25 мм, каждый брусок перекрывает несколько шлицев (рис. 26). Бруски крепятся на переходных головках винтами. Головка имеет калибр для активного контроля, изготовленный из стали ШХ15 и для износостойкости хромированный. Его стойкость — 15—20 тыс. деталей, повторным хромированием размер может быть восстановлен.  [c.74]

К способам химико-термического насыщения поверхности, применяемым для повышения ее абразивостойкости, можно отнести цементацию, цианирование, диффузионное хромирование. Эти способы в сочетании с последующей термообработкой, могут давать повышение износостойкости детали во много раз.  [c.88]

Износ хромированных лап культиватора после обработки каждой из них 37 га был в 5 раз меньше износа нехромирован-лых лап, обработавших столько же гектаров. Лучшие результаты показали хромированные с двух сторон лапы, износостойкость которых в 2 раза больше, чем у лап, хромированных только с одной верхней стороны. Кроме того, у хромированных деталей -происходило самозатачивание. Хромированные лемехи и лапы понижают тяговое сопротивление в среднем на 20%. что способствует экономий топлива на 15%.  [c.91]

Износостойкость электролитического хромирования при абразивном изнашивании исследовал также Г, А. Ташкинов [205]. Объектом исследования были плунжерные пары топливного ласоса трактора ДТ-54. Для проверки эффективности электролитического хромирования плунжеров каждый топливный насос комплектовался двумя серийными парами и двумя парами. с хромированными плунжерами. Изнашивание плунжерных пар проводилось в топливном насосе на лабораторной установке по принятой для тракторов схеме питания топливом. Опыты велись на стандартном дизельном топливе, содержащем кварцевые частицы размером 2,10 и 30 мк в поперечнике. Весовое количество частиц составляло 150 и 300 Г на одну тонну топлива. Исследования показали, что износ плунжерных пар прямо пропорционален количеству засорителя (кварцевых частиц) в топливе.  [c.91]

Эффективность применения насыщения стали карбидообразующими элементами объясняется тем, что получающийся в этом случае диффузионный слой состоит из карбидов этих элементов, отличающихся высокой твердостью, износостойкостью и эрозионной стойкостью, с другой стороны, насыщение поверхности сплавов на нежелезной основе (на основе никеля, молибдена, ниобия) алюминием и хромом сообщает им высокие жаростойкость, предел выносливости и способность к сопротивлению термическим ударам. Особенно эффективным является применение диффузионного хромирования и комплексного насыщения поверхности жаропрочных никелевых сплавов хромом и алюминием (хромоалитирование).  [c.307]

Для повышения износостойкости деталей применяют также плотные покрытия, наносимые по накатке. Срок службы их в 1,5—2 раза больше, чем пористых покрытий, а расход хрома на 30—50% меньше расхода при капальчатом хромировании.  [c.330]

Химико-термическая обработка деталей применяется в промышленности в большинстве случаев с целью повышения свойств поверхностной твердости, износостойкости, эрозиостойкосгн, задиростойкости, контактной выносливости и из-гибной усталостной прочности (процессы — цементация, азотирование, нитроцементация и др.). Для резкого повышения сопротивления абразивному изнашиванию перспективны процессы — борирование, диффузионное хромирование и другие, позволяющие получить в поверхностном слое бориды железа, карбиды хрома или другие, химические соединения металлов, отличающиеся высокой твердостью. В других случаях цель.ю химико-термической обработки является защита поверхности деталей от коррозии при комнатной и повышенной температурах в различных агрессивных средах или окалииообразования (процессы — алитирование, силицирование, хромирование и др.).  [c.96]

Диффузионное хромирование может применяться в ряде случаев с большей эффективностью, чем цементация, азотирование или нитроцементация для повышения твердости, износостойкости, эрозиостойкости, сопротивления задиранию, коррозионной стойкости и окалиностойкости стальных деталей или штампового инструмента. Режимы хромирования приведены в табл. 36. Рабочие поверхности деталей перед хромированием должны подвергаться шлифовке.  [c.124]

Таким образом, сталь Э12 и сплав 79НМ после диффузионного хромирования приобретают высокую твердость, износостойкость, коррозионную стойкость и значительно улучшают магнитные свойства. Варьируя режимом насыщения, можно в широких пределах изменять физико-химические свойства магнитомягких материалов.  [c.203]


Смотреть страницы где упоминается термин Хромирование износостойкое : [c.201]    [c.63]    [c.517]    [c.248]    [c.35]    [c.321]    [c.39]    [c.129]    [c.577]    [c.90]    [c.200]    [c.209]   
Справочник конструктора-машиностроителя Изд.4 Книга 1 (1974) -- [ c.392 ]



ПОИСК



Защитно-декоративное и износостойкое хромирование Защитно-декоративные покрытия деталей хромом

Зоммер, А. В. Рыкова и В. Е. Хромова. Износостойкое хромирование как средство замены бронзы и латуни в червячных передачах

Износостойкое хромирование цилиндрических деталей анодно-струйным способом

Износостойкость

Хромирование

Хромирование износостойкое защитно-декоративное

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте