Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы расчета по предельным нагрузкам

ОСНОВЫ РАСЧЕТА ПО ПРЕДЕЛЬНЫМ НАГРУЗКАМ  [c.373]

Основы расчета по предельным нагрузкам  [c.373]

В основу принятых в котельных нормах [81 методов расчета элементов, находящихся под давлением, положен принцип оценки прочности по несущей способности (предельной нагрузке, определяемой наступлением текучести). Такая оценка обеспечивает наилучшее использование механических свойств материала с сохранением надежности изделия при условии строгого выполнения требований Госгортехнадзора к материалам и изготовлению. В тех случаях, когда расчет, выполняемый по разрушающей нагрузке и соответствующей характеристике прочности при одноосном напряжении, приводит к необходимости выбора более толстой стенки по сравнению с получающейся при расчете по предельной нагрузке, окончательные формулы для расчета приняты по разрушающей нагрузке.  [c.194]


Для турбинных узлов типа сосудов, работающих под давлением, и трубопроводов используют метод расчета по предельным нагрузкам, заложенный В основу норм расчета элементов паровых котлов на прочность [7] (см. гл. IX). Условия работы и нагружения таких конструкций, как корпусов конденсаторов, подогревателей и др., те же, что и котельных сосудов, поэтому для них можно применять одинаковые коэффициенты запаса прочности.  [c.282]

В основу расчета положен принцип оценки прочности по предельной нагрузке при расчетном давлении рабочего тела.  [c.172]

Расчет элементов передвижного парового котла на прочность производят по Нормам расчета, разработанным ЦКТИ . В основу этих Норм положен принцип оценки прочности деталей по предельной нагрузке.  [c.246]

Расчет по методу допускаемых напряжений можно представить как частный случай расчета по методу предельных состояний для первой группы при одинаковых для всех видов нагрузки значениях коэффициента перегрузки. Вместо одного общего запаса прочности, принимаемого при расчете по методу допускаемых напряжений, в методе по предельным состояниям используют три коэффициента безопасности - по материалу м, по перегрузке п,- и по условиям работы то, устанавливаемые на основе статистического учета действительных условий работы конструкции. Поэтому метод расчета по предельным состояниям позволяет лучше учесть действительные условия работы элементов металлоконструкции и степень воздействия каждой из действующих нагрузок, а также лучше учитывают механические свойства материала.  [c.495]

В основу методов расчета элементов котла на прочность положен принцип оценки прочности по предельной нагрузке. В стенке цилиндрического сосуда или трубы, являющихся основными конструктивными формами элементов котла, находящихся под давлением рабочей среды, главными являются напряжения окружные Ог, осевые сгц и радиальные а, (рис. 24.3). По толщине стенки эти напряжения распределяются не-  [c.437]

В основу расчета положен принцип оценки прочности по предельной нагрузке при расчетном давлении рабочего тела, что позволяет более полно и точно учитывать условия работы элементов парогенератора.  [c.255]


В основу норм расчета на прочность, применяемых в СССР [139, 140, 141], положен метод расчета прочности по предельным нагрузкам. Этот метод позволяет лучше использовать резервы, заложенные в конструкцию, и снизить ее металлоемкость, но в то же время к материалу конструкции предъявляется требование достаточно высокой пластичности. Использование метода предельных нагрузок предопределяет наличие местных пластических деформаций в конструкции при ее нормальной эксплуатации.  [c.319]

При расчете по предельному состоянию вначале определяют величину предельной нагрузки, после чего коэффициент запаса вычисляют как отношение этой нагрузки к действительной. Данный метод расчета позволяет создать более экономичные конструкции,, чем метод допускаемых напряжений, поскольку в нем в основу положены величины Предельных нагрузок, при которых исчерпывается несущая способность деталей.  [c.5]

В основу принятых Норм расчета элементов паровых котлов на прочность 7- 1] положен принцип оценки прочности по несущей способности (предельной нагрузке).  [c.197]

Второй случай (П) — максимальные (предельные) нагрузки рабочего состояния возникают при работе в наиболее тяжелых условиях эксплуатации с полным (номинальным) грузом. Эти нагрузки могут вызываться максимальными статическими сопротивлениями, резкими пусками и торможениями, максимальной силой ветра рабочего состояния, плохим состоянием подкранового пути, максимальным наклоном. Для плавучих кранов и судовых кранов учитывается максимальный крен и, если предусматривается работа в открытом море, качка на волнении. По этим нагрузкам производится расчет прочности и устойчивости крана в целом и отдельных его элементов, причем выбирается наиболее опасная комбинация нагрузок в пределах действительно возможного их сочетания на основе практики расчетов и эксплуатации кранов. Максимальные нагрузки ограничиваются предельными значениями величин, возникающих при буксовании ходовых колес, проскальзывании муфт предельного момента, срабатывании электрической защиты, срабатывании растормаживающих устройств (у ковочных кранов), срезе контрольных пальцев и т. п.  [c.48]

В настоящее время принято три вида расчетов на прочность по допускаемым напряжениям, по разрушающим нагрузкам и по предельным состояниям. В основе каждого из них лежит механическая характеристика данного материала предел прочности (временное сопротивление) или предел текучести, которые называют опасными напряжениями.  [c.49]

Предлагается поставку электроэнергии промышленным потребителям производить на контрактной основе. Контракт между ЭЭС и потребителем заключается при сооружении (реконструкции) последнего. Очевидно, что со всеми существующими потребителями контракты были заключены ранее, в частности при вводе контрактной системы расчета между ЭЭС и промышленными потребителями. Разрыв во времени между моментом заключения контракта и началом поставок электроэнергии должен позволить ЭЭС ввести необходимые мощности на электростанциях и линиях электропередач. В контракте указываются выдаваемые потребителю мощность в зоне максимума нагрузки системы и энергия за год (возможно, окажется целесообразным дифференцировать мощность и энергию по сезонам года), а также сорт электроэнергии по надежности. Для каждого сорта электроэнергии задается предельная частота и продолжительность перерывов электроснабжения.  [c.183]

Традиционный способ оценки прочности дисков турбин, работающих в условиях частых пусков и остановок, с помощью коэффициента запаса по условию местной прочности учитывает влияние теплосмен на снижение несущей способности лишь косвенно и поэтому его следует признать неудовлетворительным Оценка прочности на основе теории приспособляемости предпочтительнее, поскольку неупругие деформации допускаются лишь в первых циклах действия нагрузки и граница области приспособляемости соответствует возможным предельным состояниям для дисков турбин этой группы. Поскольку целью расчета на приспособляемость является определение параметров предельного цикла и вычисление коэффициента запаса, необходимо определить связь между рабочим и предельным циклом (способ перехода от рабочего цикла к предельному). Формула (7.59) устанавливает связь между рабочими и любыми возможными, в том числе и предельными, циклами. Для оценки прочности с помощью коэффициента запаса для многопараметрической нагрузки следует из множества возможных предельных состояний  [c.505]


В основу принятых в нормах методов расчета котельных деталей положен принцип оценки прочности по несущей способности (предельной нагрузке). Оценка прочности по предельной нагрузке, а не по наибольшим местным напряжениям (по наибольшим местным эквивалентным напряжениям — для случаев многоосного напряженного состояния) позволяет применить для котельных деталей, изготовляемых из материалов с достаточно высокой пластичностью и работающих при спокойных нагрузках, наиболее прогрессивный метод расчета, обеспечивающий наилучШее использование механических свойств материала с срхранением надежности детали, при условии, что будут строго выполняться все требования к материалам, установленные в Правилах Госгортехнадзора по паровым котлам. Выполнение этих требований должно гарантировать прочность котельных деталей при наличии местных пластических деформаций, допускаемых принятым принципом расчета по предельным нагрузкам.  [c.298]

Принципиальную основу критериев прочности при расчете по максимальным нагрузкам, таких как В-критерии, изложенные в руководстве [1 ], составляет условие недопустимости повреждения или нарушения сплошности материала при расчетных напряжениях. Выбор соотношения между максимально допустимыми и предельными напряжениями для однонаправленных материалов определяется рядом факторов, обусловленных практикой расчета и проектирования. Прочность слоистого материала оценивается в результате применения критерия прочности последовательно ко всем слоям материала.  [c.86]

Элементы теории надежности можно найти в расчетах по коэффициентам запаса отношение п расчетной прочности г к расчетной нагрузке s в определенной степени характеризует уровень надежности. Понимание статистической природы коэффициентов запаса пришло позднее - в первой трети нашего века. В работах М.Майера (1926 г.), Н.Ф.Хоциалова (1929 г.) и Е.С.Стрелецкого (1935 г.) введена характеристика надежности, измеряемая как вероятность непревышения параметром нагрузки параметра прочности. В послевоенный период этот подход получил дальнейшее развитие. Он повлиял на структуру норм расчета конструкций, в которых бьиа сделана попытка расчленить коэффициент запаса на составляющие, придав каждой из них некоторый статистический смысл. Таким образом инженеры пришли к методике расчета по предельным состояниям, которая до сих пор служит основой для нормирования расчетов в строительстве.  [c.40]

Одной из наиболее информативных характеристик трещино-стойкости нелинейной механики разрушения является коэффициент интенсивности деформаций в упругопластической области К1е [1, 65-67], применимый в условиях статического и циклического нагружения. Его использование в инженерных расчетах [1, 68-71] позволяет определять запасы прочности и долговечности по предельным нагрузкам, локальным упругоплаетическим деформациям, размерам трещин и числам циклов нагружения. При этом основа расчетов — традиционные характеристики механических свойств (пределы текучести и прочности, относительные удлинение и поперечное сужение, показатель деформационного упрочнения и др.). Учитывается также влияние уровня номинальных напряжений, изменение параметров деформационного упрочнения, степени объемности напряженного состояния и предельной пластичности материала.  [c.53]

В основу расчета [32] положен принцип оценки прочности по предельной нагрузке при расчетном давлении рабочего тела, температурные напряжения в указанных элементах не учитываются, напряжениями под влиянием овализа-ции барабана, массы барабана, воды в нем и деформации от соединенных с барабаном трубопроводов ввиду малости пренебрегают.  [c.168]

Отсюда вытекает, что при учете пластических деформаций предельная нагрузка статически неопределимой системы получается большей, чем при расчете по упругому состоянию. При действии статической нагрузки на этой основе получают возможность ув 1ичивать в определенных случаях и допускаемую нагрузку, равную  [c.287]

Для жесткопластических сред принцип виртуальных мощностей позволяет получать верхние и нижнйе оценки коэффициента предельной нагрузки, формулировать экстремальные принципы для действительного поля скоростей и действительного поля напряжений. Изучение этих вопросов составляет содержание теории предельного равновесия жесткопластической среды. Основы этой теории и применение ее к практическим расчетам зало-жены" А. А. Гвоздевым [39, 40]. Ее изложение содержится во многих учебных руководствах и монографиях по теории пластичности [41 —46]. С точки зрения вариаци-онного "подхода отправным физическим"" понятием здесь является скорость диссипации энергии или диссипативный потенциа,л. На важное значение функции диссина-ции в теории жесткопластических сред впервые указал Д. Д. Ивлев [47]. I  [c.8]

Ограничение скорости изнашивания каждого основного сопряжения машины и назначение класса износостойкости имеет пер-востепенное значение для создания надежных машин (см. гл. 5, п. 5). Существуют разнообразные методы и средства для повышения износостойкости любых пар трения, однако надо знать, какие пары в каких пределах должны обеспечивать заданный диапазон скоростей или интенсивностей изнашивания. Для создания износостойких машин необходимо также регламентировать те показатели изношенного сопряжения и те условия эксплуатации, которые определяют срок службы (наработку) изделия до отказа. Это в первую очередь относится к предельно допустимым износам (см. гл. 7, п. 3) и к условиям эксплуатации — нагрузкам, скоростям, температуре, к характеристикам окружаюш.ей среды (см. гл. 12, п. 1). Только целенаправленные мероприятия по повышению износостойкости дадут наибольший эффект. Поэтому применение для этой цели разнообразных методов должно сочетаться с расчетом и анализом износа основных сопряжений, прогнозированием поведения изношенной машины, регламентацией скорости изнашивания. Еще на стадии проектирования должны быть заложены основы для создания износостойких надежных машин, сохраняющих работоспособность в различных условиях эксплуатации. Надежность, заложенная при проектировании машины, должна быть обеспечена при ее производстве и эксплуатации.  [c.403]


Поверхность предельного состояния характеризует прочность материала детали при пропорциональном нагружении, когда число циклов и длительность действия нагрузки возрастают одновременно в одинаковой степени. На диаграмме рис. 4.8 этому процессу соответствует перемеп] ение по лучу ОА . Если в рассматриваемый момент наработка детали характеризуется горизонтальными координатами точки П, то запас по циклической долговечности (для уровня нагрузки в детали А д) определяется отношением отрезков ОА/ОД. Вертикальные и горизонтальные проекции сечений поверхности предельного состояния представляют собой кривые малоцикловой усталости Ае — Ы, Ае — Тц и зависимость долговечности от длительности выдержки в цикле Тц — N. Эти кривые для конструкций энергетического машиностроения рассмотрены в гл. 2 и 3. Зависимости Ае — N как для литых, так и для деформируемых жаропрочных авиационных сплавов на никелевой основе могут быть представлены уравнениями Мэнсона — Коффина АеМ = С. Особенностью этих сплавов является то, что величины т т С при высоких температурах (750—1050° С) не постоянны, а изменяются в широких пределах т — в 1,5— 2 раза, С — до 10—20 раз). Поэтому использование зависимостей типа Ае — в расчетах деталей авиационных двигателей требует экспериментального исследования соответствуюш его материала и определения постоянных т ж С. Однако возможны некоторое обобш ение экспериментальных данных и вывод расчетных зависимостей, пригодных для определения долговечности. Если рассматривать совокупность полученных экспериментальных точек для материалов одного класса и определить средние значения и границу нижних значений области разброса экспериментальных точек, то для долговечностей 10 — 10 соответствующие уравнения этих кривых можно представить в виде  [c.88]

На стадии предварительного проектирования определяются основные параметры вертолета, обеспечивающие вьшол 1ение заданных летно-технических характеристик (ЛТХ). При этом определяются размеры вертолета и его несущего винта, а также выбирается силовая установка, после чего в процессе итераций определяется полетная масса вертолета. На основе выбранных нагрузки на ометаемую поверхность, предельного числа Маха, характеристики режима и нагрузки на лопасть определяются радиус несущего винта, концевая скорость лопасти и коэффициент заполнения. Далее в результате расчета мощности, требуемой для выполнения заданных режимов полета, определяются характеристики силовой установки. При расчете ЛТХ обычно используется метод мощностей. Это простейший метод, обеспечивающий достаточо точное решение задачи в условиях, когда известны предварительные значения основных данных вертолета. В результате определяются основные размеры и общий вид вертолета. Затем производится оценка масс агрегатов по известным параметрам несущего винта и силовой установки, а также количеству топлива и полезной нагрузке, предусмотренных заданием. Массы агрегатов суммируются для определения полетной массы вертолета, и процесс итераций повторяется  [c.301]

Для расчета на статическую прочность валов и осей строят эпюры изгибающих и вращающих моментов, продольных сил. Расчет проводят по максимальным внешним нагрузкам. Максимальные за срок службы вращающий и изгибающие моменты, сосредоточенные и распределенные силы находят с учетом специфики работы машины по пусковому моменту электродвигателя, предельному моменту при наличии предохранительных элементов, инерщюнным моментам, возникающим при внезапном торможении без предохранительных элементов, и т.п. При наличии необходимой информации максимальные вращающий и изгибающий моменты определяют на основе экспериментальных и статистических данных о распределении основных величин, влияющих на нагружен-ность элементов машины.  [c.85]

Граничные и начальные условия выведены из основных уравнений теории Тимошенко с учетом условий симметрии для изгиба и угла сдвига. Параметр s для реальных материалов изменяется от 3 до 4. Пренебрежение деформацией сдвига соответствует бесконечной жесткости на сдвиг, и в этом случае s=0. Получены точные решения в явной форме для прогиба И изгибающего момента на основе преобразования Лапласа по i, л и обращения по формулам Римана— Меллина. Сначала решения строятся на основе представления нагрузки в классе гладких функций, аппроксимирующих б-функцию. Затем предельным переходом получаются решения, соответствующие б-функциям. Показано, что решение задачи с самого начала для нагрузок в классе б-функций приводит к таким же результатам. Для s = 3 проведены численные расчеты в нескольких сечениях. Из расчетов следует, что первой приходит более быстрая изгибная волна со скоростью Е/ р, а затем приходит сдвиговая волна со скоростью / kGIp.  [c.60]


Смотреть страницы где упоминается термин Основы расчета по предельным нагрузкам : [c.369]    [c.371]    [c.27]    [c.294]    [c.106]    [c.203]    [c.52]   
Смотреть главы в:

Сопротивление материалов  -> Основы расчета по предельным нагрузкам

Сопротивление материалов  -> Основы расчета по предельным нагрузкам

Сопротивление материалов  -> Основы расчета по предельным нагрузкам



ПОИСК



Нагрузка предельная

Нагрузки Расчет

Основы расчета ТОА

Расчет по предельным нагрузкам



© 2025 Mash-xxl.info Реклама на сайте