Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионные потери металла и коррозионный ток

Нетрудно заметить, что необходимый для построения коррозионной диаграммы суммарный ток складывается из двух величин /внешн. измеряемого микроамперметром при снятии реальных поляризационных кривых, и /внутр. т. е. токов саморастворения, которые могут быть определены пересчетом коррозионных потерь металла Ат (определяемых по убыли массы электрода за время опыта или анализом раствора на содержание в нем растворившегося металла в виде ионов) в ток /внутр по закону Фарадея [уравнение (561)1.  [c.284]


При низкой плотности блуждающих токов дополнительные разрушения вызываются действием локальных элементов. При высокой плотности тока в некоторых средах может выделяться кислород — это снижает коррозионные потери металла на единицу количества электричества. Амфотерные металлы (например, РЬ, А1, Sn, Zn) корродируют и в щелочах, и в кислотах, поэтому они могут разрушаться не только на анодных участках, но и на катодных, где в результате электролиза накапливается щелочь.  [c.212]

Аф, и силу коррозионного тока 1 р. Используя далее закон Фарадея, нетрудно определить величину коррозионных потерь металла или скорость коррозии. Формулы для расчета (в преобразованном виде) приведены ниже  [c.45]

ТОК переходит с металла в почву, — анодным . На рис. III-12 представлена типичная схема образования и движения блуждающих токов. Переход тока с металлической конструкции в землю чреват опасностью сильной коррозии, так как в этом месте коррозионные потери металла, в соответствии с законом Фарадея, прямо пропорциональны силе вытекающего блуждающего тока. В отдельных случаях сила блуждающих токов может достигать десятков, а иногда и сотен ампер.  [c.89]

Весь материальный эффект электрохимической коррозии металла является результатом анодного процесса, интенсивность которого определяется величиной протекающего между анодными и катодными участками корродирующей поверхности металла коррозионного тока I. Величина коррозионных потерь металла Ат пропорциональна величине коррозионного тока /, т. е.  [c.164]

Для определения Кз необходимо знать катодную плотность тока /к (А/м ), весовые потери металла в коррозионной среде без электрозащиты Адо (г/м ) и весовые потери металла при электрозащите Ад (г/м )  [c.184]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Исследование кинетики электродных реакций. Один из основных методов изучения механизма процессов электрохимической коррозии металлов и сплавов это построение и анализ поляризационных кривых, пользуясь которыми можно также определить ток коррозии и рассчитать коррозионные потери.  [c.85]

В силу отмеченных основных особенностей расчет электрохимической коррозии и защиты металлов сводится к расчету распределения коррозионного и защитного потенциала и тока или к определению суммарных токов, приближенно характеризующих суммарные коррозионные потери или эффективность электрохимической защиты.  [c.11]

Количественные критерии оценки коррозионной стойкости материалов определяются особенностями применяемого метода испытаний — ими, как правило, являются различные физические и физико-химические величины, например, значение токов и потенциалов, потери массы (или привес) металла, глубина проникновения коррозии, количество и место расположения очагов локального поражения металла, наличие и глубина коррозионных трещин и т.д. Наиболее часто используемым количественным критерием коррозионной стойкости металлов является скорость его равномерного утончения (мм/год). Для сталей разработана десятибалльная шкала  [c.141]

Цель настоящей работы — изучение процесса контактной коррозии (расчет потерь массы и контролирующего фактора коррозионного процесса) по коррозионной диаграмме. Последнюю получают измерением величины тока и потенциалов электродов коррозионной пары в нейтральном электролите. Если в качестве электродов гальванического элемента служат анодные и катодные составляющие структуры какого-либо металла, то такая пара может моделировать работу коррозионных микроэлементов данного металла.  [c.117]

Перетекание электричества. Протекание тока между анодами и катодами в металле — движением электронов от анодных участков к катодным (коррозионный ток) и в растворе — движением катионов от анодных участков к катодным и движением анионов от катодных участков к анодным. Разрушение при таком механизме будет происходить преимущественно на аноде на катодных участках, где протекает процесс деполяризации, ощутимых потерь металла не будет.  [c.67]

Исследование всех видов коррозионного поведения черных и цветных металлов при окислении масла (расход воздуха 0,0 1 дм /ч, содержание SO2 il мг/дм ), при защите металла тонкой пленкой масла, в системе масло — морская вода с регистрацией токов, потенциалов, потери массы металла и пр. анализ и электрохимические исследования масла до и после окисления  [c.73]

На этой диаграмме сила тока /, будет характеризовать коррозионный процесс на поверхности металла, сила тока /а будет характеризовать анодный ток в районе дна трещин, ей, повидимому, и будет пропорциональна скорость развития коррозионных трещин. Отрезок а—d представляет суммарную силу тока, характеризующую коррозионные потери всей системы.  [c.169]

Важность задачи защиты от коррозии и обеспечения длительной и бесперебойной работы таки кабелей возросла еще и потому, что их прокладывают в подземных условиях в грунты различной агрессивности, через реки, болота. В подобных же условиях в настоящее время укладывают магистральные кабели связи. Опыт эксплуатации таких кабелей показывает, что их оболочки в ряде случаев подвергаются интенсивным коррозионным повреждениям, связанным с потерями цветного металла и большими затратами на ремонт. Ущерб значительно увеличивается вследствие нарушения работы кабельных устройств. Для оболочки кабелей в настоящее время стали использовать алюминий, тогда как в начале строительства железных дорог на переменном токе для этих целей применяли свинец. Кабели связи с алюминиевой оболочкой имеют меньшую массу, лучше защищены от влияния внешних электромагнитных полей и ударов молнии. Коэффициент защитного действия таких кабелей в три-четыре раза выше, чем кабелей со свинцовой оболочкой.  [c.103]


При изменении малых токов, например когда исследуют работу коррозионного элемента, образованного металлом устья и вершиной щели или трещины, необходимы очень чувствительные приборы, которые имеют большое внутреннее сопротивление. Чтобы измерить коррозионные токи между этими участками поверхности металла, замыкают подобные электроды, а в цепь включают чувствительный потенциометр с малым сопротивлением. Для этой же цели можно использовать так называемую схему с нулевым сопротивлением (рис. 44). В этой же схеме падение напряжения в исследуемой гальванической паре от сопротивления прибора и дополнительного сопротивления компенсируется равным по величине, но противоположным по знаку напряжением от внешнего источника тока. Таким образом, в измерительной цепи не происходит потери напряжения от исследуемой пары (сопротивление схемы как бы равно нулю). Контроль за регулировкой схемы ведут по гальванометру.  [c.144]

Простейшим примером математического моделирования коррозионного разрушения служит зависимость потери массы металла при электрохимическом растворении от силы тока I и времени т (закон Фарадея)  [c.173]

В том случае, когда металл не поляризуется внешним током и электрод сравнения находится на некотором расстоянии от металла — вне действия электрического поля коррозионного микроэлемента, измеряется потенциал коррозии (стационарный потенциал), соответствующий гипотетическому максимальному току кор-розии. Поэтому при построении коррозионных диаграмм обычно сопоставляют величину стационарного потенциала с током коррозии, вычисленным из величины потери массы металла по закону Фарадея. На коррозионных диаграммах приводят также значения равновесных потенциалов для катодной и анодной реакций коррозионного процесса.  [c.54]

Скорость коррозии (плотность коррозионного тока) можно рассчитать по реальным поляризационным кривым (см. 18). Данные по скорости саморастворения, полученные из электрохимических данных и фактически определяемые по потере массы величины, оказываются довольно близкими для условий, когда не наблюдается концентрационная поляризация. Тем самым подтверждается теория сопряженных электрохимических реакций, объединяющая гомогенный и гетерогенный механизм коррозии металлов.  [c.72]

Коррозия — это процесс физико-химического разрушения металла под влиянием внешней среды. По характеру процесса различают химическую и электрохимическую коррозию. В первом случае процесс окисления металла происходит при непосредственном воздействии соприкасающейся с ним среды без появления электрического тока, а во втором случае коррозия протекает в электролитах и сопровождается появлением электрического тока. В зависимости от характера агрессивной среды электрохимическая коррозия может быть атмосферной, почвенной, структурной (вследствие неоднородности металла по структуре), биологической (протекает в подземных условиях при участии микроорганизмов), щелочной, кислотной, контактной (при контакте двух разнородных металлов), коррозией, вызванной блуждающими токами или водными растворами солей. Стойкость против коррозии зависит от химического состава, структуры, состояния поверхности, напряженного состояния металла, а также химического состава, концентрации, температуры и скорости перемещения агрессивной среды по поверхности изделия. Мерой коррозионной стойкости является скорость коррозии металла в данных условиях и среде, которая выражается глубиной коррозии в миллиметрах в год или в потере массы в граммах за час на 1 м поверхности металла.  [c.20]

Особенностью контактной коррозии в атмосферных условиях является большая глубина коррозионного поражения непосредственно в месте контакта при относительно небольших общих материальных потерях. Это связано со спецификой распределения плотности тока по поверхности гальванического элемента контактирующих металлов (рис. 20). При атмосферной коррозии, когда речь идет о весьма тонких слоях электролита, на поверхности подвергнутой коррозии электросопротивление последних резко увеличивается с удалением от места контакта, что приводит к соответствующему падению плотности тока до нулевой. При этом плотность тока в месте контакта на стороне анода в несколько раз выше, чем на катоде. Обычно контакты в данном случае оказывают влияние на расстоянии от линии контакта, составляющем несколько миллиметров. На большем удалении коррозия обеих частей гальванической пары протекает независимо от наличия контакта. Подобный характер контактной коррозии приводит к тому, что на локальные материальные потери не оказывают влияния площади катодных и анодных участков при прочих равных условиях они определяются протяженностью линии контакта.  [c.29]

На нагрев изделия при прямой полярности (плюс источника тока присоединен к детали, а минус — к электроду) расходуется 50 % тепловой мощности дуги, на нагрев электрода — 30 % и потери в окружающую среду составляют—20 %. Таким образом, 75—85 % всей мощности дуги расходуется на нагрев и расплавление металла. Различие тепловыделения на катоде и аноде используют при решении технологических задач. Сварку изделий, требующих большего подвода теплоты для нагрева кромок, выполняют на прямой полярности, а сварку тонколистовых конструкций и конструкций из коррозионно-стойких и жаропрочных сталей осуществляют при обратной полярности (плюс источника присоединен к электроду, а минус — к детали, см. рис. 28.1, б).  [c.256]


Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму.  [c.286]

Блуждающие токи являются причиной серьезных коррозионных разрушений подземных коммуникаций и сооружений в промышленной зоне. Блуждающие постоянные то1си появляются вследствие утечки в грунт постоянного тока, потребляемого наземным и подземным рельсовым транспортом (метро, трамвай, электрифицированная железная дорога), электросварочными агрегатами. Участки, где блуждающие токи входят из земли в металлическую конструкцию, становятся катодами, а там, где ток стекает с металла в почву — анодами. Интенсивность коррозионных повреждений находится в прямой зависимости от величины блуждающих токов и подчиняется закону Фарадея. Протекание тока величиной в 1 А в течение года соответствует растворению около 9 кг железа. В некоторых неблагоприятных случаях были зарегистрированы блуждающие токи величиной до 200-500 А. Отсюда видно насколько интенсивными могут быть повреждения от блуждающих токов. Если анодная область равномерно распределена по большой поверхности, коррозионные потери могут и не вызывать аварийных разрушений, но в местах нарушения неметаллического защитного покрытия коррозионные разрушения происходят быстро.  [c.156]

Коэффициент пропорциональности (К) меаду скоростью кq o-зии и током поляризации в начальный период времени ижет максимальное значение, далее он уменышается и в области стационарного процесса не зависит от времени. Очевидно, что вклад ва-чального периода нестационарного коррозионного процесса в обще коррозионные потери металла с течением времени снижается. Поэтому для определения К могут быть использованы коррозионные потери металла, поределенные после завершения испыташй и величины тока поляризации в области его установившегося значения.  [c.27]

Таким образом, метод состоит в измерении реальных поляризационных кривых V — / (/)внешн (пунктирная кривая на рис. 191) и определении тока саморастворения металла (по коррозионным потерям Ат) /внутр при различных постоянных значениях потенциала V = onst с применением потенциостата. Дважды нанеся на график рис. 191 последние значения (один раз, откладывая их от оси ординат, а второй — прибавляя к реальной поляризационной кривой), получим идеальную коррозионную диаграмму (сплошные линии на рис. 191).  [c.284]

Анодная поляризационная кривая, полученная при потенцио-статических условиях для пассивирующегося металла, существенно отличается от представленной на фиг. 30 и характеризуется сильным снижением плотности тока после превышения критической величины. Потенциал в этой точке часто называется потенциалом первичной пассивности рр. Плотность тока может упасть на несколько порядков, а установление стабильной, более низкой величины соответствует появлению очень тонкой пассивной пленки, обладающей сравнительно высоким электрическим сопротивлением. Функция тока заключается в поддержании существования пленки, которая медленно растворяется. Если пленка растворяется медленно, то это соответствует сплаву с высокой коррозионной стойкостью. Таким образом, скорость коррозии зависит от растворимости пленки. Растворимость пленки определяется ее природой, дефектной структурой и природой анионов, которые могут быть включенными в нее. Эта растворимость может быть довольно высокой для некоторых металлов в определенных условиях, следовательно, и скорость потерь металла будет значительной. Возможно, что такие ситуации не должны описываться термином пассивность , который обычно ассоциируется с синонимами инертный или нереакционноспособный . Следует заметить, что общепринятого определения пассивности нет. Некоторые исследователи допускают, чтобы этот термин охватывал любое поведение при анодной поляризации, при котором облагораживание потенциала сопровождается снижением плотности тока, которое может быть и небольшим. Возможно, требуется какой-либо другой термин для общего явления пленкос разования, а термин пассивность должен быть сохранен для случаев, когда образующаяся пленка растворяется со скоростью, меньшей некоторой величины. В этом контексте подразумевается, что пассивность ассоциируется вообще с медленно растворяющейся пленкой. При использовании определений, принятых в других книгах, следует проверять, подразумевается ли в них тот же самый смысл.  [c.112]

Коррозия в водных средах представляет собой электрохимическое явление, которое подробно рассматривалось в разд. 2.2. Растворение металла протекает в форме анодного процесса. Если потенциал корродирующего объекта снижается до величины обратимого потенциала анодной реакции, то анодное растворение прекращается, так как скорость растворения компенсируется скоростью осаждения металла (соответствует плотности тока обмена) при этой величине потенциала. Таким образом, потерь от разъедания не будет. По существу, вся поверхность объект будет содержать участки с протекающими на них только катодными коррозионными реакциями выделения водорода, восстановления кислорода или той и другой вместе. Это и является йсновой катодной защиты.  [c.128]

Порошковая металлургия 332 Потенциалы пассивации 56 нерепассивации 56 коррозии металлов и сплавов в морской воде 78 питтингообразования 92, 93 репассивации 90, 201 Потери коррозионные 9 Предельный диффузионный ток 38 Примеси внедрения 161 Производство конструкционных металлов 8 Протекторы 45 магниевые 270, 274 цинк и его сплавы 295 Пурбе диаграмма 17, 18 Равновесные потенциалы окислительных процессов 34, 35 Растворение сплавов  [c.357]

Из полученных экспериментальных кривых путем измерения площади, заключенной между осями координат и кривой коррозионный ток — время, могут быть рассчитаны коррозионные потери анода за цикл увлажнения — высыхания, что позволяет дать сравнительную оценку скорости коррозии. Такая оценка имеет относительный характер, однако на основании данных можно ориентировочно рассчитать интенсивность коррозионного процесса за длительный период времени. Предпочтение оказывается припою, который в паре с основным металлом дает минимальный микроток.  [c.255]

Любопытно, что подобный порядок в значении сопротивления коррозионной усталости не совпадает с порядком значений коррозионных потерь для таких же, но ненапряженных образцов. По-видимому, в случае макроконтакта последний при наличии дополнительного фактора — напряжения сравнительно за короткое время обусловливал возникновение на поверхности образца коррозионного изъязвления, являющегося концентратором напряжения. Дно изъязвления под влиянием сильного анодного тока, возникающего как от макроконтакта, так и от концентрации напряжения, быстро заострялось и превращалось в трещину коррозионной усталости. Излом этих образцов от усталости при коррозии наступал всегда раньше, чем у образцов без контакта, и чаще находился на линии раздела медного слоя со сталью. Это и понятно, так как именно на границе двух металлов с неодинаковыми значениями электродных потенциалов в электролитах возникал максимальный ток коррозии. Иная картина наблюдалась у образцов с микроконтактами. Рассредоточенные катодные участки обусловливали одновременное возникновение большого числа микрокоррозионных изъязвлений. Последние способствовали равномерному рассредоточиванию приложенных механических напряжений по образцу. Это снижало разрушающее действие напряжения, и поэтому время, за которое развивалась трещина коррозионной усталости, увеличивалось. Не исключено также, что подобное распределение микрокатодов на поверхности образцов в условиях хорошей аэрации, возникающей от вращения образцов, может также приводить к их пассивированию и, следовательно, к некоторому торможению процесса коррозионной усталости.  [c.240]


Механизм катодной защиты металлов от коррозии с помощью анодного протектора аналогичен механизму катодной защиты внещним током. Между защищаемым металлом и анодным протектором протекает электрический ток. При этом поверхность защищаемого металла поляризуется катодно, ее потенциал смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на анодном протекторе, который постепенно растворяется. После полного растворения анодного протектора или потери его контакта с защищенным металлом протектор необходимо возобновлять.  [c.248]

Повышенная концентрация водорода на поверхности способствует внедрению атомов водорода в металлическую решетку, что вызывает водородную хрупкость (потерю пластичности) и, кроме того, создает в некоторых сплавах железа высокие внутренние напряжения, достаточные, чтобы вызвать самопроизвольное растрескивание (водородное растрескива-н и е). Каталитические яды повышают абсорбцию водорода независимо от того, поляризуется ли металл внешним током или вследствие коррозионного процесса, сопровождающегося выделением водорода. По этой причине в некоторых рассолах буровых скважин, содержащих НзЗ, затруднено применение низколегированных стальных трубопроводов, которые испытывают обычные высокие конструкционные напряжения и протяженность которых под землей составляет несколько тысяч метров. В результате небольшой общей коррозии трубопровода образуется водород, часть которого входит в напряженную сталь и вызывает водородное растрескивание. При отсутствии Н 5 общая коррозия тоже происходит, но без водородного растрескивания. Высокопрочные стали вследствие их меньшей пластичности более склонны к водородному растрескиванию, чем низкопрочные стали, однако водород внедряется в решетку в любом случае, образуя у низкопрочных сталей вспучивание, а не растрескивание .  [c.53]

Характер ограничения процесса коррозии определяли также сопоставлением потерь металла в длительных коррозионных испытаниях с катодным током. Коррозию стали в бетоне с добавкой 4% СаСЬ от массы цемента наблюдали в течение года в атмосфере с относительной влажностью 80%. Толщина защитного слоя равнялась 10 мм. Величину катодного тока определяли на стали в бетоне при той же относительной влажности воздуха и в воде. Для этого снимали поляризационные кривые время — ток при потенциале—800 мВ по насыщенному каломельному электроду НКЭ (рис. 3). При таком потенциале, согласно диаграмме состояния воды, катодная реакция с кислородной деполяризацией существенно облегчается, в то время как водородная деполяризация в этих условиях отсутствует. В воздушно-влажном бето-  [c.38]

Разрушение поверхности металлов, находящихся в почве (но не вследствие блуждающих электрических токов), обычно называется почвенной коррозией и связывается с характеристикой почвы. Практика показывает, что не только свойства почвы влияют на течение коррозионного процесса. Тем не менее, за счет свойств почвы может быть отнесена большая часть коррозионных потерь изучение этих свойств дает возмонЛюсть избежать многих затруднений при эксплуатации трубопроводов и других подземных сооружений.  [c.468]

Действующие строительные нормативы регламентируют четыре степени воздействия среды неагрессивная, слабоагрессивная, среднеагрессивная, сильноагрессивная. Такое деление дает качественную оценку и определяет общую систему выбора материалов, стойких в рассматриваемых условиях. Во всех случаях оценку агрессивного воздействия окружающей среды на строительный материал (конструкцию) следует рассматривать не изолированно, а в общей системе. Очень важно иметь данные о количественных коррозионных потерях материалов. Они могут выражаться для металла потерей массы во времени [отнесенной к единице поверхности и к единице времени, г/(м -ч), г/(м2-год)] или же уменьшением толщины металла в единицу времени. Могут учитываться другие признаки изменение показателей механической прочности (например, удельной ударной вязкости), изменение плотности тока, отвечающей скорости данного коррозионного процесса и т. д.  [c.7]

Так как электроны ассимилируются в катодной зоне (ватерлиния) и освобождаются в анодной зоне (нижняя часть), то должно быть непрерывное движение электронов вверх через металл, что и было качественно подтверждено в работах 1923 г. Одновременно, обязательно должны быть следы движения катионов и анионов в жидкости к катодной и анодной областям соответственно. В 1939 г. Агар, изучая поведение цинка в растворах хлори-стого и сернокислого натрия и распределение пптенидя.гтя в жид с гти. обнаружил движение ионов и нашел, что ток соответствовал по закону Фарапея коррозионным потерям, которые измерялись гравиметрическим методом. В этой работе, описанной на стр. 781, показано, что электрохимическттй механизм коррозии, определенный выше, в пределах ошибок опыта, объясняет всю измеряемую коррозию.  [c.87]

Применеше этого метода целесообразно тоща, кшда заранее известна зависимость между пот№1Ц1алом ко юзии металла и его коррозионным состоянием - активное растворение, пассивное состояние, питтингообразование, коррозионное растрескивание и другие. Метод базируется на работах отечественных исследователей [64-68 ], показавших, что зависимость ток-потенциал в пассивирующих средах четко определяет величину коррозионных потерь и не зависит от способа установления потенциала.  [c.15]

В табл. 54 приводятся экспериментальные данные проведенного исследования работы модели макропары (рис. 198), которая образовывалась между поверхностью железното диска диаметром 20 см, помещенного в хорошо проницаемую для кислорода почву (песок 10%-ной влажности), и отдельным изолированным от остальной поверхности участком того же металла диаметром 15 мм, над которым находился цилиндрический столбик глины диаметром Ъ мм и высотой 15 мм. Ток макропары измерялся по падению потенциала на сопротивлении г, равном 3 омам, через которые были замкнуты эти два участка поверхности. Очевидно, что работа таких макропар вследствие сравнительно ограниченного размера выключений будет в значительно меньшей степени зависеть от омического сопрогивления почвы, чем работа протяженных макропар неодинаковой аэрации, а в большей степени определяется поляризационными характеристиками. Из сопоставления весовых потерь с плотностями макрокоррозионных токов (на основании результатов трех независимых опытов, см. табл. 54). Следует, что доля коррозии металла за счет микрокоррозионных токов была почти неощутима, а основные потери вызывались током, протекавшим в цепи работающей макропары. Относительно большая пов0рхность катода подобных коррозионных пар обеспечивает значительный и стабильный во времени коррозионный ток, вызывающий глубокое поражение металлической поверхности на анодном участке,, образующемся под местным включением более плотной почвы.  [c.377]

В Международном научном центре им. Роквелла было исследовано поведение гальванических пар, образующихся при контакте покрытых Ало-дином 600 алюминиевых сплавов 7075, 6061 и 2024 со сплавом Ti — 6А1—4V или нержавеющей сталью 304 [190,],. Получены данные о коррозионном токе и потерях массы в 3,5 %-ном растворе Na I при комнатной температуре. Покрытие из Алодина 600 значительно снижало скорость растворения алюминиевых сплавов. Контакт с нержавеющей сталью усиливал разрушение как незащищенных алюминиевых сплавов, так и материалов с покрытием. Расчет по величине гальванического тока приводил к более низким значениям скоростей растворения металла, чем расчет по потерям массы. Введение соответствующих поправочных коэффициентов позволяет использовать непрерывную запись величины гальванического тока для определения мгновенных значений скорости растворения, по которым в свою очередь путем экстраполяции можно рассчитать скорость коррозии при продолжительной экспозиции.  [c.190]


Смотреть страницы где упоминается термин Коррозионные потери металла и коррозионный ток : [c.44]    [c.191]    [c.107]    [c.36]    [c.83]    [c.15]    [c.77]    [c.43]    [c.59]    [c.91]   
Смотреть главы в:

Курс теории коррозии и защиты металлов  -> Коррозионные потери металла и коррозионный ток



ПОИСК



Коррозионные потери

Определение коррозионных потерь металла при продолжительной экспозиции

Потери металла при про



© 2025 Mash-xxl.info Реклама на сайте