Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протектор анодный

Для внутренней защиты резервуаров с питьевой водой можно применять только такие аноды (протекторы), анодные продукты реакции которых в воде по своему виду и концентрации не представляют опасности в гигиеническом отношении, По этой причине здесь не могут быть применены протекторы или аноды с наложением тока от внешнего источника, содержащие токсичные элементы, например алюминиевые протекторы, активированные ртутью, или протекторы из сплава свинца с серебром (см. разделы 7 и 8). В качестве протекторов для резервуаров с питьевой водой практически можно применять только магний и алюминий, поскольку продукты их реакции не вредны для здоровья, а ионы магния и без того содержатся в природной питьевой воде.  [c.412]


Если левая часть больше правой, то более экономична система защиты с наложением тока от постороннего источника, а если наоборот, то более экономична протекторная система защиты. В коэффициент Рк входят затраты Kft к Ка и геометрические показатели протекторов (анодных заземлителей). В примере на рис. 22.1 принято Рк = 5.  [c.417]

Для повышения устойчивости сталей к коррозионной усталости применяют поверхностный наклеп и защиту с помощью протекторов, анодных покрытий или ингибиторов.  [c.103]

Электрохимическая защита — катодная и применение протекторов анодная электрохимическая защита и защита от блуждающих токов применением электродренажа.  [c.5]

Протекторы (анодные электроды), изготовленные из различных сплавов (табл. 50 и 51), можно устанавливать как одиночные, так и групповые.  [c.112]

Эффективность защитного действия анодного контакта тем больше, чем отрицательнее электродный потенциал, меньше анодная поляризуемость и больше поверхность металла анодного протектора.  [c.362]

Наиболее эффективным средством защиты металлических конструкций от коррозии блуждающими переменными токами является метод поляризованных (присоединенных к защищаемому сооружению через полупроводниковые диоды) протекторов и дренажей он дает возможность снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них катодный полупериод, который обеспечивает их катодную защиту.  [c.397]

Роль наполнителя сводится к уменьшению анодной поляризации протектора, снижению сопротивления растеканию тока, устранению причин, обусловливающих образование плотных слоев продуктов коррозии на поверхности протектора. При использовании наполнителя обеспечивается стабильная во времени сила тока в цепи протектора.  [c.301]

Для осуществления протекторной защиты к конструкции присоединяют протектор, обычно в виде пластины или цилиндра, который в данной среде обладает более электроотрицательным потенциалом, чем любой участок защищаемой конструкции. Схематически такая защита (рис. 201) сводится к превращению электродом П анодных участков А данной конструкции, состоящей в простейшем случае из короткозамкнутой системы двух электродов А—К, в катодные. В этом случае анод посылает электроны во внешнюю цепь меньше или даже сам начинает их принимать от присоединенного протектора.  [c.301]

Вспомогательные аноды могут не расходоваться при эксплуатации, но протекторы, для того чтобы поддержать соответствующий электрический ток, растворяются в количестве по крайней мере не меньшем, чем это требуется по закону Фарадея. В большинстве случаев наблюдаемая скорость растворения выше теоретической. Для цинка эта разница невелика, но для магния она ощутима. Ее возникновение объясняют образованием коллоидных частиц металла [15, 16] или, что более вероятно, образованием на первой стадии анодного процесса одновалентных  [c.223]


Проверку и приемку защитных устройств должны осуществлять, как правило, в процессе строительства защищаемого сооружения в строгом соответствии с проектом. Однако ка практике часто наблюдаются случаи, когда строительство средств активной защиты проводят после сдачи коммуникаций в эксплуатацию, а это в свою очередь приводит к излишним работам и соответственно удорожанию сметной, стоимости строительства средств защиты. Так, например, стоимость контрольно-измерительного пункта строящегося трубопровода составляет 42—50 рублей, уложенного в три раза дороже. Проверку протекторов, электродов анодного заземления и соединительных кабелей проводят обычно внешним осмотром, а исправность катодных станций, электродренажных установок, вентильных блоков и изолирующих фланцев — путем электрических измерений на специальном стенде.  [c.65]

Приведены подробные сведения о применяемых в ФРГ протекторах, преобразователях станций катодной защиты и анодных заземлителях, используемых в установках катодной защиты с внешним источником тока. Описаны особенности катодной защиты от коррозии резервуаров-хранилищ, цистерн, промышленных объектов, кабелей телефонной и телеграфной связи, а также силовых кабелей.  [c.14]

В последующих главах подробно рассматриваются свойства и применение протекторов, катодных преобразователей, специального оборудования для защиты от блуждающих токов и анодов (анодных заземли-телей) с наложением внешнего тока. В числе областей применения рассматриваются подземные трубопроводы, резервуары-хранилища, цистерны, кабели систем связи, сильноточные кабели и кабели с оболочкой, заполненной сжатым газом, суда, портовое оборудование и внутренняя защита установок для питьевой воды и различных промышленных аппаратов. Отдельная глава посвящена проблемам защиты трубопровода и кабелей, подвергаемых действию высокого напряжения. В заключение рассматриваются затраты на защиту от коррозии и вопросы экономичности. В приложении даны справочные таблицы и дан вывод математических формул, представлявшихся необходимыми для практического применения способов защиты и для более полного понимания излагаемого материала.  [c.18]

Возможности применения протекторов (гальванических анодов) в отличие от анодных заземлителей (анодов с наложением тока от постороннего источника) ограничиваются их химическими свойствами. Стационарный потенциал материала протектора в среде должен быть достаточно отрицательным по отношению к защитному потенциалу защищаемого материала, чтобы можно было обеспечить достаточное напряжение для получения защитного тока. Согласно пояснениям к рис. 2.5, между стационарным и равновесным потенциалами металла нет взаимосвязи. Это объясняет различные изменения значений потенциалов в ряду стандартных потенциалов и стационарных потенциалов на рис. 7.1. В целом различия в стационарных потенциалах у металлов получаются меньшими. Кроме того, все стационарные потенциалы зависят также и от среды (см. табл. 2.4). Температура тоже оказывает на них влияние. В частности, потенциал цинка в различных водах с повышением температуры становится более положительным вследствие образования поверхностного слоя.  [c.174]

Протекторы нельзя укладывать в кокс, как это обычно практикуется в случае анодных заземлений катодной защиты с наложением тока от постороннего источника, изготовляемых из графита и кремнистого чугуна. При этом ввиду разности потенциалов между протектором и коксом образуется сильный коррозионный элемент, что приводит к быстрому разрушению протектора. Кроме того, движущее напряжение  [c.189]

По катодной защите трубопроводов изданы технические нормативные документы [5—9]. Обычно применяется способ наложения тока от постороннего источника. На рис. 1.1 схематически иллюстрируется устройство и принцип действия станции катодной защиты (СКЗ). В разделе 8 были рассмотрены анодные заземлители и аноды, в разделе 9 — защитные преобразователи. Протекторы (раздел 7) применяются лишь в особых случаях.  [c.245]

Сопротивление растеканию тока в грунт с протекторов и анодных заземлителей различных типов может быть рассчитано по формулам, приведенным в разделе 24.1 (см. табл. 24.1). Использование магниевых  [c.272]


Так как для достижения требуемого анодного тока в сумме с желательным запасом (в общей сложности около 15 мА) суммарное сопротивление цепи защитного тока при напряжении между сталью и магниевым протектором 0,6 В, согласно формуле (12.2), не должно  [c.274]

Электрохимическая защита. Электрохимическая защита как метод борьбы с КР многих металлов исследуется давно. Изучались многие способы электрохимической защиты — поляризация внешним током, протекторы, анодные покрытия и т. д. Полученные при этом данные были довольно противоречивы. Большая часть. иссле.тователей пришла к выводу, что катодная защита, в особенности при небольшой поляризации останавливает процесс КР [36, 59]. При увеличении катодной поляризации часто наблюдается водородное охрупчивание [60]. Анодная поляризация в основном приводит к ускорению растрескивания сталей. Иногда и анодная защита повышает устойчивость к КР [67].  [c.75]

Эффект растет с ростом Як и уменьшается с ростом металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод)  [c.296]

Расчетное значение потенциала алюминия лежит между потенциалами магния и цинка. В воде или грунтах алюминий имеет склонность к пассивации с соответствующим сдвигом потенциала к потенциалу стали. Тогда он перестает выполнять функцию протектора. Для предотвращения пассивации в околоэлектрод-ное пространство можно вводить специальное вещество для создания среды, содержащей хлориды засыпка). Однако это может служить только временной мерой. В морской воде пассивацию лучше всего предупреждать, используя сплавы. Например, сплавление алюминия с 0,1 % Sn с последующей термообработкой при 620 °С в течение 16 ч и закалкой в воде для удержания олова в состоянии твердого раствора очень сильно уменьшает анодную поляризацию в хлоридных растворах [6]. Коррозионный потенциал такого сплава в 0,1т растворе Na l составляет—1,2 В по сравнению с —0,5 В для чистого алюминия. Некоторые алюминиевые протекторы содержат 0,1 % Sn и 5 % Zn [7, 8]. Протекторы с 0,6 % Zn, 0,04 % Hg и 0,06 % Fe при испытаниях в морской воде в течение 254 дней работали с выходом по току 94 % (2802 А-ч/кг). В настоящее время в США на производство протекторов из таких сплавов ежегодно расходуют примерно  [c.219]

На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек-  [c.219]

Е анодных аонах блухщающне токи стекают в основном с протекторов через открытый вентиль (диод). Этим предупреждается коррозионное разрушение трубопроводв.  [c.46]

Марка сплава Скорость анодного растворения, г/(Атод) Удельное электрическое сопротивление, Ом mmVm Потенциал протектора по ХСЭ, В  [c.31]

Основное назначение стеклокерампческой пленки на алюмпнид-ной поверхности лопатки компрессора — защитить ее от электрохимической коррозии, которая протекает при пониженных температурах. Электродный потенциал покрытия ДифА-СФ имеет более отрицательное значение по сравнению с потенциалом материала лопатки, поэтому само покрытие будет являться протектором в случае появления забоины на лопатке компрессора. Характер разрушения поверхностных слоев лопаток с покрытием ДифА-СФ при коррозионных испытаниях подтверждает анодный характер покрытия.  [c.167]

А, Б, В — протекторная защита Г. Д. Е — катодная защита 1 — протектор 2 — трубопровод (резервуар) 3 — электрический проводник 4 — контрольног измерительный пункт (КИП) S — полупроводниковый вентиль 6 —защитное заземление 7 — анодный заземлитель 8 —катодная станция.  [c.12]

Измерение сопротивления растеканию тока, например от протекторов или от анодных заземлйтелей станций катодной защиты, проводится по трехэлектродной схеме. При этом измерительный ток подводится (рис. 3.23) через измеряемый и вспомогательный заземлители, а напряжение измеряется между заземлйтелей и зондом. Вспомогательный за-землитель должен быть удален примерно на четырехкратную длину контролируемого заземлителя (на 40 м), а зонд — примерно на двукратную длину заземлителя (на 20 м). Отсюда следует, что измерить сопротивление растеканию тока с трубопроводов и рельсов практически невозможно. При измерении сопротивления растеканию с изолированных участков в грунт всегда охватывается только ограниченная длина трубопровода, зависящая от примененной частоты.  [c.118]

Для внутренней защиты резервуаров и для защиты портовых сооружений и судов применяют полярные покрытия толщиной около 0,5 мм. При катодной защите для уменьшения катодного образования пузырьков нельзя применять омыляющиеся связующие [30, 31]. Образование пузырьков, как и катодный подрыв, усиливаются по мере снижения потенциала. Вероятно, что имеется некоторый критический предельный потенциал образования пузырьков для оценки системы покрытия, однако этот вопрос еще недостаточно исследован. Ввиду такой зависимости от потенциала приходится, например, поблизости от анодных заземлителей систем катодной защиты предусматривать особую защиту (см. раздел 18.3.2.2). Иногда отмечаемое ухудшение защитного действия при слишком близком располонгении протекторов, напротив, обусловливается не величиной потенциала, а химическим действием образующего гидрата Mg OH)j [21].  [c.172]


Другим свойством протектора как анода в коррозионном элементе является эквивалентность между нагрузкой и массой, согласно уравнению (2.5). Этот показатель называется токоотдачей. Он получается тем выше, чем меньше атомная масса и чем выше валентность металла протектора. Для оценки практической пригодности теоретическая токоотдача сама по себе не является определяющей, поскольку под анодной нагрузкой большинство материалов протекторов обеспечивает не теоретическую, а меньшую токоотдачу. Разность между теоретической и фактической токоотдачей (выход по току) соответствует собственной коррозии самого материала протектора. Ее причиной являются катодные побочные реакции или анодная реакция, протекающая иногда с аномальной валентностью ионов металла протектора (см. раздел 7.1.1).  [c.175]

Влияние нагрузки на величину Иг или на собственную коррозию протектора обусловлено тем, что катодный частичный ток 1к зависит от потенциала или тока. Коррозия с кислородной деполяризацией не зависит от материала и потенциала, а выделение водорода с увеличением токовой нагрузки уменьшается. Кроме того, выделение водорода существенно зависит от материала, причем более благородные элементы сплава стимулируют собственную коррозию протектора. Поскольку в обоих случаях частичный ток /д не пропорционален токоотдаче /, согласно уравнению (7.6), не может быть значений а з или собственной коррозии, не зависящих от величины I. Однако в противоположность этому при анодной реакции по уравнению (7.5а) эквивалентная реакция по уравнению (7.56) с повышением потенциала или нагрузки тоже усиливается. В таком случае / и / получаются пропорциональными между собой, и коэффициент аг становится независимым от нагрузки. Приблизительно такие условия наблюдаются в случае магниевых протекторов, причем значение 2=0,5 мож,ет быть однозначно объяснено величинами z=2 и =1 [2]. Другое объяснение этой величины 02 основывается на механизме, по которому на поверхности протектора имеется активный участок, пропорциональный току, на котором вследствие гидролиза происходят коррозия с кислородной деполяризацией и выделение водорода [3, В этом случае понятны и значения, отличающиеся от аг=0,5, в том числе и меньшие. Оба механизма практически уже нельзя различить, если места протекания частичных реакций по уравнениям (7.5а) и (7.56) очень близки между собой.  [c.177]

Точка пересечения характеристических кривых по формулам (7.12) и (7.13) является рабочей точкой защищаемой системы. С увеличением плотности тока I движущее напряжение уменьшается. У протекторов, характеризующихся лишь малой поляризацией, оно остается почти постоянным в широком диапазоне плотностей защитного тока. Анодная характеристика [выражаемая формулой (7.12)] показывает эффективность протектора. Этот показатель зависит от химического состава материала протекторов и от свойств коррозионных сред. В частности, поляризуемость может существенно увеличиваться при наличии в среде веществ, образующих поверхностаый слой.  [c.178]

Протекторы должны наряду с достаточно отрицательным потенциалом иметь возможно большую токоотдачу (в амперах) и отличаться возможно меньшей поляризуемостью. Напротив, анодные заземлители стан-  [c.197]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Из протекторов может быть применен практически только магний, поскольку он имеет высокое движущее напряжение (см. раздел 7). При удельных сопротивлениях грунта р<20 Ом -м можно применитв и цинк. В районах с высоким удельным электросопротивлением и со сравнительно высокой электропроводностью в непосредственной близости от трубопровода, например в вечной мерзлоте или скальном грунте, могут быть уложены также ленточные и проволочные анодные заземлители (см. раздел 7.7.5) рядом с защищаемым трубопроводом [16]. Протекторы находят применение при малой плотности защитного тока и низком удельном электросопротивлении грунта, но главным образом при отсутствии электрических сетей на территории. Ввиду малой токоотдачи отдельных протекторов практически никакого влияния на посторонние объекты не наблюдается.  [c.252]

Рис. 12.2. Катодная защита резервуара мазутохранилища магниевыми протекторами / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — магниевые протекторы а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — измерительный канал на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт Рис. 12.2. <a href="/info/6573">Катодная защита</a> резервуара мазутохранилища <a href="/info/168396">магниевыми протекторами</a> / — здание 2 — изолирующие фланцы Л — посторонние сооружения 4 — <a href="/info/168396">магниевые протекторы</a> а, и 5 — анодные и катодные кабели 6 — трубопроводы 7 — <a href="/info/306968">измерительный канал</a> на глубине около 2,3 м — регулируемое сопротивление (резистор, настраиваемый на 8 Ом) 9 — измерительный пункт
При расчете максимальных анодных токов по формуле (7.14) принято, что сопротивление растеканию тока в грунт с катода существенно меньше соответствующего показателя для протекторов (анодов). Однако поскольку это условие, в особенности в случае резервуаров-хранилищ с хорошей изоляцией, не выполняется, токоотдача протекторов получается существенно меньшей [см. формулы (7.13) и (12.2)].  [c.274]

Для катодного подсоединения использовали кабель типа NYY с полимерной оболочкой, имеющий сечение медных жил 2X4 мм к резервуару этот кабель был подключен при помощи подсоединительной планки по DIN 6608 []2, часть 1, с. 2] к патрубку купола. Оба протектора были подключены каждый своим кабелем с сечением медного провода IX Х4 мм1 Как видно на рис. 12.2, катодный и анодный кабели введены в один измерительный пункт и там подключены к различным клеммам с таким расчетом, чтобы нрп контрольных измерениях можно было определять ток обоих протекторов раздельно, а для измерений потенциала имеется отдельное подключение к резервуару.  [c.275]


Согласно нормали TRbF 102, пункт 6.2, использование резервуаров-храиилищ и подключенных к ним трубопроводов в качестве заземляте-лей не разрешается [17]. Для снижения катодного сопротивления растеканию тока при одновременном предотвращении повышенной потребности в защитном токе оказалось целесообразным подсоединять к резервуарам-хранилищам в качестве заземлителей магниевые протекторы. Сопротивление растеканию тока с протекторов в грунт должно составлять 65 В//утечки. Величину защитного тока следует настроить так, чтобы получалось небольшое натекание тока (порядка нескольких миллиампер) в магниевые протекторы, с целью уменьшить их коррозию. При защитной схеме с контролем аварийного потенциала (FS), если вспомогательный заземлитель располагается в воронке напряжения над анодным заземлителем, возмол но срабатывание далее и при отсутствии аварийного потенциала. В таких случаях, которые впрочем можно предотвратить проведением соответствующих мероприятий при сооружении систем катодной защиты, может оказаться полезным включение конденсатора соответствующей емкости в подводящий кабель к вспомогательному заземлителю. Во взрывоопасных зонах нул<но также учитывать и соответствующие предписания и нормативы [16, 18—20].  [c.285]


Смотреть страницы где упоминается термин Протектор анодный : [c.66]    [c.28]    [c.71]    [c.248]    [c.323]    [c.361]    [c.35]    [c.14]    [c.16]    [c.34]    [c.58]    [c.198]    [c.253]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.97 ]



ПОИСК



Анодная защита катодными протекторами

Анодная защита оксидными протекторами

Анодный

Защита стали от коррозии с помощью анодного протектора

Использование графитовых протекторов при анодной защите титана в соляной кислоте

Протекторы



© 2025 Mash-xxl.info Реклама на сайте