Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочка алюминиевая

Поверх поясной изоляции кабелей накладывают оболочки алюминиевую, сварную стальную гофрированную, ПВХ, ПЭ или броню из стальных лент.  [c.115]

Режимы ковки в оболочках алюминиево-бериллиевых сплавов, содержащих 30% (вес) Ве при 450° С  [c.210]

Обозначения единиц измерения 439 Оболочка алюминиевая 126 Оборот в минуту 441  [c.467]

На рис. 16.6 приведены расчетные кривые для интенсивности напряжений ст,=р при осевом сжатии цилиндрической оболочки из алюминиевого сплава Д16 в зависимости от отношения Rjh. Кривая  [c.355]


Тонкостенная трехслойная сферическая оболочка находится под действием внутреннего давления q (см. рисунок). Материал А — алюминиевый сплав, толщина слоя 64 = 1 мм. Заполнитель В — пластмасса, толщина бд = 10 мм, модуль упругости Еи = = 3 ГПа, коэффициент Пуассона fis = 0.1. Средний диаметр оболочки 100 см. Определить наибольшее избыточное давление q, при котором нормальные напряжения в оболочке удовлетворяют условиям Оа < 90 МПа Ов < 5 МПа.  [c.306]

Очень эффективна высокочастотная сварка алюминиевых и стальных оболочек в кабелях связи. Сварка оболочек позволяет резко снизить стоимость кабеля, отказаться от применения дефицитного свинца, повысить производительность оборудования. Поскольку в полости оболочки находятся жилы кабеля (кабельный сердечник), поместить туда магнитопровод невозможно. Поэтому расход энергии в 1,5—2 раза выше, чем при сварке труб. Сварка ведется на частоте 440 или 1760 кГц при мощности 100—160 кВт. Скорость сварки достигает 80—90 м/мин, снижаясь до 20—25 м/мип во время сращивания кабельного сердечника. На кабельных станах используется автоматический регулятор, датчик которого  [c.217]

Бумажная пропитанная изоляция не имеет буквенного обозначения. Третья буква марки кабеля обозначает тип защитной оболочки А — алюминиевая, С — свинцовая, П — полиэтиленовая, В— поливинилхлоридная, Р — резиновая, HP — оболочка из резины, не поддерживающей горения. Последние буквы обозначают тип защитного покрытия Б — броня из двух стальных оцинкованных лент с антикоррозионным защитным покровом, Бн — то же, но не с горючим защитным покровом, Г — отсутствие защитных покровов по-  [c.258]

Так как бумажная пропитанная изоляция имеет большую гигроскопичность, то при ее использовании необходимо применять металлические оболочки (свинцовые или алюминиевые), которые защищаются от механических повреждений и коррозии специальными покрытиями. Силовые кабели с поясной изоляцией составляют по-  [c.259]

М — маслонаполненный, Н — низкого давления, С — свинцовая оболочка, А — алюминиевая оболочка, Аг — гофрированная алю ,  [c.263]

Развитие кабельной промышленности в послевоенные пятилетки шло по следующим направлениям а) создание новых конструкций проводов и кабелей б) замена медных жил проводов и кабелей алюминиевыми в) использование искусственного волокна взамен хлопчатобумажной пряжи и натурального ше.лка г) замена свинцовых оболочек кабелей и джутового покрытия пластмассовыми д) механизация и автоматизация производственных процессов приготовления резиновых смесей. В 1960 г. была разработана серия силовых кабелей на напряжение 500—3500 в с алюминиевыми жилами и пластмассовой оболочкой. На алюминиевые жилы и пластмассовую изоляцию переведено изготовление контрольных кабелей. Освоено изготовление обмоточных проводов, выдерживающих нагрев до температуры 300—400° С.  [c.103]


В типичном случае, кузов дома на колесах может быть изготовлен формованием левой и правой половин, соединяемых в единое целое и усиленных каркасными элементами из дерева, металла или упрочненного пластика, которые присоединяются к внутренней поверхности оболочки перед накладкой панелей интерьера. Иным способом изготовления, пригодным для сборки на конвейере, является присоединение отдельно изготовленных панелей корпуса к каркасу из алюминиевых сплавов.  [c.27]

Например, известно, что конструкции алюминиевых и стальных вагонов, представляющие собой, как правило, оболочки, локально подкрепленные профилями или изготовленные только из листов, не самые эффективные в случае столкновения. Эти конструкции не обладают достаточной стойкостью при крушении, даже если вмонтировать в концы вагонов детали, поглощающие энергию удара. Вместе с тем при испытаниях на разрушение автомобилей конструкции из клееных панелей показали очень высокую стойкость при столкновениях, что указывает на целесообразность их применения в железнодорожных вагонах.  [c.175]

Кабели с алюминиевой оболочкой по возможности не следует соединять с кабелями других типов, поскольку алюминий имеет самый отрицательный потенциал среди всех материалов, применяемых для оболочек кабелей, из-за чего любой дефект в защитном покрытии становится анодом. При очень малом отношении площадей анода и катода плотность тока получается большой, и кабель с алюминиевой оболочкой из-за этого быстро разрушается. Алюминий может подвергаться также и катодной коррозии (см. рис. 2.16). Поэтому при подключении кабелей с алюминиевой оболочкой к системам катодной защиты потенциал кабеля (по медносульфатному электроду сравнения) нельзя снижать до более отрицательных значений, чем —1,3 В (см. раздел 2.4). Кабели с алюминиевой оболочкой прокладывают лишь в исключительных случаях, и то только тогда, когда грунт не содержит большого количества солей, а блуждающие токи отсутствуют.  [c.299]

Опасность коррозии по пунктам а и б в соответствии с данными из раздела 4.3 не может быть уменьшена улучшением качества покрытия, поскольку полное отсутствие каких-либо дефектов нельзя гарантировать. Опыт показывает, что дефектов покрытия на стальных трубах высоковольтных кабелей нельзя избежать даже при самой тщательной прокладке. Устранение опасности коррозии здесь возможно только применением катодной защиты от коррозии и защиты от блуждающих токов. В случае свинцовых оболочек необходимо учитывать ограничения по чрезмерно отрицательным потенциалам в соответствии с рис. 2.11 и разделом 2.4. Поскольку алюминий может разрушаться как при анодной, так и при катодной коррозии, соответствующее ограничение едва ли технически осуществимо ввиду узости допустимого диапазона потенциалов (см. рис. 2.16). Полимерное покрытие алюминиевых оболочек совершенно не должно иметь дефектов [3, 4].  [c.306]

Одним из показателей коррозионной активности грунта по отношению к стали является концентрация ионов СГ и S0 ". Суммарное содержание их в грунте более 0,1%, как правило, указывает на его повышенную коррозионную активность, при этом содержание иона С1 более определенно характеризует коррозионную активность грунта, чем содержание S0 . Это объясняется тем, что при большом содержании хлоридов затрудняется образование защитных пленок. Для свинцовых оболочек кабелей опасно присутствие в грунте органических и азотистых веществ, а для алюминиевых конструкций — растворимых хлористых солей.  [c.8]

Условия прокладки С бумажной пропитанной изоляцией в алюминиевой оболочке В поливинилхлоридной оболочке  [c.21]

С бумажной пропитанной изоляцией в алюминиевой оболочке  [c.22]

Толщина алюминиевых оболочек, мм  [c.27]

Оценивать коррозионную активность грунтов, грунтовых и других вод по отношению к свинцовой оболочке кабеля следует по данным химического анализа согласно табл. 38 и 39 по отношению к алюминиевой оболочке кабеля — по данным химического анализа согласно табл. 40 и 41.  [c.47]

Коррозионная активность грунтов по отношению к алюминиевой оболочке кабеля  [c.48]

Замена свинцовой оболочки алюминиевой значительно облегчает и удешевляет кабель. Кабели с алюминиевыми жилами в алюминиевой оболочке обозначают ААГ, ААБ, ААБГ и т. д.  [c.11]

Длина и скорость опрессовываемого кабеля и регулировка толщины оболочки алюминиевой опрессовки кабеля определяются счетчиком длины и скорости. Длина онрессованиого кабеля измеряется  [c.103]

Для турбин с повышенными параметрами пара до 565° С теплоизоляционные матрацы из кремнеземной стеклоткани с наполнением обожженным вермикулитом или перлитом асбовермикулитовые плиты перлитовые оболочки алюминиевая фольга в виде блоков армоальфоль (конструкция автора) и асбоизоляция.  [c.323]


Выпускаются также двух- и трехскростные двигатели в чугунной и алюминиевой оболочке, обдуваемые.  [c.124]

При изготовлении оболочковых конструкций в зависимости от их размеров и геометрических форм приходится выполнять прямолинейные, кольцевые, круговые, спиральные стыковые швы В зависимости от толщины стенки оболочки приемы выполнения каждого из них имеют свои специфические особенности, разнообразна и применяемая при сварке оснастка /5, 16/. Стыковые швы тонкостенных конструкций, как правило, выполняются в средс защитных газов. В качестве материала оболочек наибольшее применение получили низкоуглеродистые и низколегированные стали низкой и средней прочности, а также высокопрочные стали, титановые и алюминиевые сплавы и т.п. Сварные оболочковые конструкции средней толщины (до 40 мм) из низколегированных и низкоуглеродистых сталей изготовляются преимущественно с помощью автоматической сварки под флюсом. Конструкции, работающие в афессивных средах, выполняют из хромоникелевых и хромистых сталей и сплавов с помощью автоматической сварки под слоем флюса. Сварк> продольных и кольцевых швов выполняют, как правипо, с дв х сторон.  [c.71]

Определить напряжение в стенке стального цилиндра, вставленного в алюминиевую рубашку. Внутренний диаметр цилиндра d = 160 ММ, толщина стенок t = 3 мм толщина алюминиевой оболочки t = 6,5 мм. Давление газов в цилиндре = ЗЗкг/ J При расчете  [c.68]

Рассмотрим в качестве примера подкрепление кольцом сферического купола с углом полураствора 0 = 60°, имеющего радиус сферы Ro — 10 м, толщину h = I см и вы-полпешюго из алюминиевого сплава, для которого примем = 7 10 MH/м Распорное кольцо предполагаем изготовленным из стали с модулем упругости = 2 10 МН/мд Коэффициент Пуассона примем равным р, = 0,3. Для площади кольца из формулы (9.55) получим величину = = 271 см . Таким образом, для обеспечения безмомептно-сти напряженного состояния сферической оболочки требуется иметь распорное кольцо очень большого сечения, что невыгодно. Сечение кольца можно было бы уменьшить.  [c.253]

Высокочастотная сварка. Исключительно важное, значение имеет сварка изделий при высокочастотном нагреве, особенно сварка продольных швов труб, профилей и оболочек кабелей [42]. В настоящее время на более чем шестидесяти станах высокочастотной сварки ежедневно изготавливается свыше 3 млн. м труб и профилей из ннзкоуглеродистых сталей и сплавов цветных металлов. Диаметр труб составляет 10 — 530 мм при толщине стенки 0,5—10 мм. Достоинства шовной сварки при высокочастотном нагреве заключаются в универсальности способа, позволяющего сваривать практически любые металлы без применения защитных сред в высокой экономичности процесса, связанной с локализацией энергии в узкой зоне кромок в высоком качестве соединения и большой скорости процесса, достигающей 120 м/мин. В некоторых случаях, например при сварке алюминиевых и стальных оболочек кабелей связи, высокочастотный метод является единственно возможным способом нагрева.  [c.213]

На напряжения 20 и 35 кВ в СССР изготовляются кабели либо в одножильном исполнении в свинцовой и алюминиевой оболочке с сечением жил 120—300 мм либо в трехжильном исполнении, при котором кабель скручивается из трех круглых изолированных бумажной пропитанной изоляцией жил, каждая из которых имеет свинцовую оболочку, что позволяет создать в кабеле радиальное электрическое поле (марки ОСБ, ОСК, АОСБ, АОСБГ, АОСК). Кабели с отдельно освинцованными жилами сечением 120—150 мм , сохраняют достаточную гибкость, содержат меньшее количество пропиточного состава и имеют лучшие условия для теплоотвода. Недостатком их являются большая масса и повышенный расход металла для оболочек.  [c.260]

В соответствии с техническими условиями эти кабели выпускаются следующих марок АПвП — кабель с алюминиевой жилой, изолированной вулканизированным полиэтиленом в оболочке из полиэтилена низкого давления АПвПс — то же, но в оболочке из самозатухающего полиэтилена АПвПу — то же, но с двойной оболочкой из самозатухающего полиэтилена АПвВ — то же, но в оболочке из поливинилхлоридного пластиката.  [c.264]

Кабельные масла использу ются в производстве силовых электрических кабелей пропитывая бумажную изоляцию этих кабелей, они повышают ее электриче-(кую прочность, а та]4же способствуют отводу теплоты потерь. Кабельные масла ( ывают различных типов. Для пропитки изоляции силовых кабелей на рабочие напряжения до 35 кВ в свинцовых или алюминиевых оболочках (кабели с вязкой пропиткой) применяется масло марки КМ-25 с кинематической вязкостью не менее 3 ММ-/С при 100 °С, температурой застывания не выше минус 10 °С и температурой спышки не ниже +220 °С. Для увеличения вязкости к этому маслу дополнительно i,сбавляется канифоль (стр. 125) или же синтетический загуститель.  [c.99]

На специальных заводах ведется также изготовление тепловыделяющих элементов ( твэлов ) для реакторов. Обычно выполняемые в виде стержней из урана, плутония, их окислов, карбидов или сплавов с другими материалами, твэлы помещаются в стальные, алюминиевые или какие-либо другие герметичные оболочки, предохраняющие ядерное тоцливо от коррозии и препятствующие поступлению радиоактивных осколков деления ядер во внешнюю среду. Производство твэлов составляет одну из существенных отраслей атомной промышленности.  [c.163]

Был сконструирован ряд систем с использованием компози-ционпых материалов, для которых производственные затраты (материалы и изготовление) были ниже, чем в варианте с металлоконструкциями. Особенно это относится к случаям, когда применение волокнистых композиций позволяет сократить число деталей и инструментов или использовать более простые инструменты, упростить конструкцию или процедуру сборки, уменьшить время контроля. В этих случаях облицовочные панели на сотовой основе, армированные волокнами, зачастую оказываются способными конкурировать со сложной алюминиевой конструкцией из оболочек и стрингеров.  [c.107]


Сообщалось также и о так называемых многослойных протекторах из различных протекторных материалов [31]. Такие протекторы должны вначале давать ток большой силы для предварительной поляризации, а затем в течение длительного времени работать с малым током при возможно большей токоотдаче (в ампер-часах). Когда такие протекторы имеют наружную оболочку из магниевого сплава и сердечник из цинка, температура плавления сердечника оказывается более низкой, чем у материала оболочки. Это соответственно усложняет технологический процесс изготовления. Однако та же цель может быть достигнута и проще при сочетании протекторов из различных материалов [132], например при использовании магниевых протекторов для предварительной поляризации и цинковых или алюминиевых протекторов для длительной защиты.  [c.195]

Кабели со слоистой оболочкой имеют жилы с полимерной изоляцией. В качестве полимерного материала может быть применен сплошной или ячеистый полиэтилен. Ячеистый (микропористый) полиэтилен представляет собой вспененный полиэтиленовый материал, имеющий другие электрические свойства, чем сплошной полиэтилен. Поры, образующиеся при вспенивании, иногда заполняют пластичным нефтепродуктом для предотвращения проникновения влаги и недопущения продольной вп-допроницаемости. Эту конструкцию обматывают полимерными лентами и металлической лентой для экранирования. Лента может быть алюминиевой или медной она имеет полимерное покрытие. На металлический экран дополнительно наносят оболочку и защитное покрытие из полиэтилена методом экструзии. Кабели почтового ведомства ФРГ с полимерным покрытием снабжаются тисненой маркировкой. В отличие от поливинилхлорида на полиэтилене можно выполнять только выпуклое тиснение, поскольку выдавливание углублений приводит к возникновению внутренних напряжений, и материал может разрушиться в результате коррозионного растрескивания под напряжением.  [c.300]

Для коммунального и промышленного электроснабжения под землей прокладывают кабели низкого напряжения 220/380 В, среднего напряжения 1—30 кВ и высоковольтные — преимущественно на ПО кВ. Для сетей низкого и среднего напряжения в настоящее время обычно используют кабели, имеющие массивные полимерные (пластмассовые) оболочки, например для низковольтных сетей — типов NYY и NAYY, которые не нуждаются в какой-либо защите от коррозии. Кабели с медным экраном и полимерным покрытием, например типов NY Y и NY WY, тоже достаточно коррозионностойкие. Опасность коррозии существует для кабелей, находивших прежде предпочтительное применение — со свинцовой оболочкой и стальной броней, обвернутых только одним слоем джута, пропитанного битумом, а также для кабелей с алюминиевой и гофрированной стальной оболочкой с полимерным покрытием, если оно повреждено. Для сетей напряжением ПО кВ используют преимущественно кабели в стальных трубах с битумным или полимерным покрытием.  [c.306]

Токопроводящие жилы силовых кабелей изготавливаются из медных и алюминиевых проволок. Кабели могут быть изолированы пропитанной бумагой, резиной, хлорвиниловым пластикатом и другими материалами. Герметизирующие оболочки выполняются из свинца, алюминия, шланговой резины, шлангового полихлорвини-лового пластиката броня силовых кабелей — из стальных лент и проволок.  [c.19]

Прииенение марок силовых кабелей на напряжение 1 кв и выше с алюминиевыми, пластмассовыми и стальными защитными оболочками  [c.21]

ЛАБ Кабель с алюминиевьши жилами в алюминиевой оболочке, бронированный, с защитным наружным покровом Прокладка в траншеях, в земле  [c.22]

Токовые нагрузки (а) кабелей с алюминиевыми жилами, с резиновой или пластмассовой изоляцией в свшщовой, полихлорвиниловой и резиновой оболочках, бронированных п небронированных, при различной прокладке  [c.24]

Толш ина алюминиевых и свинцовых оболочек кабелей дана в табл. 26 и 27.  [c.25]


Смотреть страницы где упоминается термин Оболочка алюминиевая : [c.465]    [c.270]    [c.111]    [c.120]    [c.261]    [c.263]    [c.286]    [c.124]    [c.298]    [c.46]   
Справочник по электротехническим материалам (1959) -- [ c.126 ]



ПОИСК



Защита кабелей в алюминиевой оболочке

Изготовление кабелей в сварной алюминиевой оболочке

Наружные диаметры и вес кабелей с алюминиевыми жилами в свинцовой оболочке на напряжение 1—10 кв

Наружные диаметры и вес кабелей с медными или алюминиевыми жилами с изоляцией из пропитанной бумаги в алюминиевой оболочке на напряжение 1—10 кв

Наружные диаметры и вес установочных проводов с алюминиевыми жилами с резиновой изоляцией в различных оболочках

Оболочки вращающиеся — Расчет конические алюминиевые — Пример расчета

Оболочки конические алюминиевые — Пример расчета

Пресс гидравлический для наложения алюминиевой оболочки на кабель. Модель

Пресс гидравлический для наложения алюминиевой оболочки на проволоку. Модель

Технология наложения на кабели алюминиевых оболочек



© 2025 Mash-xxl.info Реклама на сайте