Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мышьяк соединения

Мышьяка соединения (в пересчете на Аз).......  [c.74]

Торговый продукт всегда содержит следы мышьяка, соединения кремния и уголь. Механич. загрязнения удаляют фильтрованием, а еще лучше повторной перегонкой. Превращение, белого Ф. в красный производится при f° 260° уменьшение давления замедляет течение реакции освещение ускоряет процесс так же влияют катализаторы (иод, селен).  [c.70]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Серусодержащие соединения, являясь эффективными ингибиторами, иногда вызывают водородную хрупкость стали. Это является следствием того, что сами эти вещества или образующиеся продукты их гидролиза (например, HaS) могут способствовать внедрению в металл атомов водорода (см. разд. 4.5). Такое же действие могут оказывать соединения, содержащие мышьяк и фосфор.  [c.271]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

Летучесть золота и серебра в присутствии примесей серы, селена и теллура заметно увеличивается по причине образования соединений, обладающих высокой упругостью паров. Повышенная летучесть наблюдается также в присутствии примесей цинка, мышьяка, железа, свинца, сурьмы и некоторых других металлов.  [c.397]

Гальванические цеха на заводах по охране труда являются самыми неблагоприятными, так как технологические процессы в них протекают с выделением большого количества пара, газов, аэрозолей и пыли, вредно действующих на организм человека. В настоящее время используется до 350 различных химических соединений и металлов. среди них ядовитые цианистые соединения, фосфорные соли, свинец, ртуть, хром, никель, мышьяк, медь, едкие химические вещества.  [c.81]

III группы — алюминия, галлия, индия с элементами V группы — фосфором, мышьяком и сурьмой. Все эти соединения обладают кристаллической структурой цинковой обманки ZnS, подобной структуре алмаза. Несмотря на сходство с германием в области кристаллического строения, имеется существенное отличие в химической связи. Для образования четырех парных связей атома индия с другими атомами не-  [c.193]

Металлические покрытия из расплавленных металлов наносят обычно на стальные полуфабрикаты. Речь идет об оловянных, цинковых и алюминиевых покрытиях. Железо при соответствующих условиях реагирует с этими металлами и образует химические соединения, так называемые интерметаллические фазы, с помощью которых покрытия соединяются со сталями. Свинец не образует таких фаз с железом, однако с помощью так называемых твердых растворов с оловом и мышьяком можно получить промежуточный слой между сталью и свинцовым покрытием. Образование промежуточных фаз является необходимым условием, и толщина их. должна быть минимальной.  [c.75]


Скорость коррозии свинца уменьшается при наличии примесей серной кислоты или соединений мышьяка. Содержание азотной кислоты или фтор-ионов ускоряет коррозию. При абразивном действии рекомендуется выполнять футеровку из кислотостойкого пли графитового кирпича.  [c.469]

Большое ускорение коррозии в кислотах отмечено у цинка, содержащего в виде примесей железо и олово или медь. Магний, корродирующий даже в нейтральном электролите с водородной деполяризацией, также подвергается сильной коррозии при загрязнении его железом. Введение в состав сплава примесей с повышенным перенапряжением или вторичное их осаждение на поверхности основного металла, наоборот, должно привести к уменьшению скорости растворения сплава. Например, скорость коррозии железа резко уменьшается в кислоте при введении в нее мышьяковистых соединений. Вторичное осаждение на поверхности железа мышьяка, обладающего высоким  [c.10]

Установлено, что температура сваривания минералокерамики со сталью, чугуном и другими металлами составляет 1540° С. Следует отметить высокую химическую устойчивость минералокерамики ЦМ-332 к воздействию агрессивных сред. При обычной температуре на нее не действует ни один химический реагент, включая щелочи, плавиковую и фосфорную кислоты. Фосфор, сера, мышьяк и их соединения не действуют на нее до температуры 1000° С.  [c.382]

Свойства некоторых соединений мышьяка  [c.357]

При взаимодействии с водой золы и шлаков они частично растворяются и загрязняют ее соединениями кальция, натрия, калия, а также примесями фторидов, мышьяка, ванадия, канцерогенных органических соединений, фенолов, ртути, германия и некоторых других веществ. В табл. 1.4 приведены составы осветленных вод оборотных систем ГЗУ в зависимости от методов золоулавливания и содержания СаО в золе [23].  [c.20]

При обычной температуре на корундовые материалы не действует ни один химический агент, а при высоких температурах их действие проявляется очень незначительно. В некоторых случаях только в корундовых тиглях можно получать химически чистые вещества. В них можно плавить металлический алю.миний и его сплавы, щелочные и щелочноземельные металлы, кремний, олово, железо. Сера, фосфор, мышьяк, их соединения и сплавы не взаимодействуют с корундовыми материалами даже при 1000° С. До 1800° С корундовые материалы стойки к действию восстановителей углерода, водорода и свободных металлов, в частности вольфрама.  [c.340]

Соединения мышьяка нашли применение помимо сельского хозяйства также в стекольном и фарфоровом производстве.  [c.380]

АРСЕНАТЫ, соли мышьяковой кислоты общей ф-лы Me AsOj, где Ме — одновалентный металл см. Мышьяка соединения.  [c.482]

АРСЕН ИДЫ, химические соединения мышьяка с металлами общей формулы MegAsj, где Ме — одновалентный металл, см. Мышьяка соединения.  [c.482]

АРСИН, мышьяковистый водород АзНз, см. Мышьяка соединения.  [c.482]

Рассмотрим подробнее фазовые диаграммы Рдис — Т — X с высоким давлением диссоциации (фазовые диаграммы с легколетучими компонентами). Следует отметить, что внимание к ним повысилось в связи с возросшей ролью в полупроводниковой электронике соединений, содержащих летучие компоненты. Например, к ним относятся соединения А "В , содержащие легколетучие компоненты фосфор и мышьяк, соединения Л"В , содержащие ртуть, А В , содержащие серу, и т.д.  [c.168]

Электромобили применяются постоянно в ограниченных масштабах на внутригородских мелкопорционных перевозках грузов. Это может быть оправдано по соображениям экологии и экономии, так как стоимость заправки бензином превосходит стоимость зарядки электроэнергией транспортного средства при одинаковом пробеге в 2. .. 5 раз. Сдерживает применение электромобилей отсутствие энергоемких и дешевых аккумуляторных батарей. Кроме того, при проектировании электромобилей берутся за основу или неоправданно копируются обычные автомобили универсального назначения с завышенными относительно к условиям городской эксплуатации показателями прочности, проходимости, а значит металлоемкости и стоимости. В целом электромобили нетоксичны, но при зарядке кислотных свинцовых аккумуляторных батарей выделяется газ, в состав которого входят соединения мышьяка. Их концентрация мала, но токсичность высока. При расширении масштабов применения электромобилей это может стать не менее важной самостоятельной проблемой.  [c.61]


В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались меж-кристаллнтнпй коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия.  [c.278]

Антифрикционные и механические свойства баббитов повышаются при введении в их состав никеля, кадмия и мышьяка. Никель упрочняет а-раствор. Кадмий с мышьяком (сплав БН) образуют соединения As d, которые служат зародышами для формирования соединения SnSb (р-фазы).  [c.357]

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.  [c.319]

Полупроводниковые соединения А " В являются ближайшими аналогами кремния и германия. Они образуются в результате взаимодействия элементов II1-6 подгруппы периодической таблицы (бора, алюминия, галлия, индия) с элементами V-6 подгруппы (азотом, фосфором, мышьяком, сурьмой). Соединения А В принято классйфицирбвать по мётм Соответственно раз-  [c.291]

При вакуумной плавке меди в алундовых тиглях содержание мышьяка и сурьмы уменьшается вследствие улетучивания их оксидов этого не наблюдается при плавке в графитовых тиглях [1]. Хотя чистый мышьяк сублимирует при 612 °С, но с медью он образует устойчивое соединение СизАз (сурьма с медью Сиз5Ь).  [c.42]

Карбидами называют соединения углерода с другими элементами. Широкое применение имеет карбид кремния Si —карборунд—ио-ликристаллический полупроводник. Карборунд получают в электрических печах при температуре 2000° С из смеси двуокиси кремния SiOa и угля. Кристаллы карборунда гексагональной структуры в чистом виде бесцветны, но благодаря примесям технический материал имеет светло-серую или зеленоватую окраску. При нормальных условиях энергия запрещенной зоны = 2,86 эв. Характер электропроводности определяется составом примесей или отклонением от стехио-метрического состава Si . Электронная проводимость получается при избытке Si, а также при наличии примесей из V группы — фосфора, мышьяка, сурьмы, висмута или азота. Дырочная проводимость достигается при избытке С и наличии примесей элементов II группы (Са, Mg) и III группы (А1, In, Ga, В). При введении примесей изменяется также окраска карборунда. Подвижность носителей низкая гг = = 100 см 1в-сек. Up = 20 см /в-сек. Порошкообразный карборунд применяют для изготовления нагревателей электрических печей с температурой до 1500° С. Кроме того, из него изготовляют нелинейные объемные резисторы — варисторы, в которых значение R падает с ростом приложенного напряжения (рис. 14.2). Нелинейность таких резисторов резко вырастает при одновременном введении небольших примесей алюминия (IM группа) и азота (V группа), вблизи точки перехода  [c.188]

В результате комплексного исследования влияния легирования на стойкость сталей к растрескиванию в сероводородсодержащих электролитах предложен ряд низколегированных сталей, обладающих в данных средах повышенной стойкостью [28]. Кроме того, предложены стали, легированные редкоземельными элементами, а также высоколегированные сплавы Ni—А1 — сплав после горячей прокатки и старения, Ni- u— Fe - сплавы типа инконель после отж-ига или холодной обработки и ряд других. Есть основание считать, что редкоземельные элементы рафинируют сталь от металлоидов (кислород, водород), вязывают мышьяк, серу и фосфор в тугоплавкие соединения и вместе с тем снижают перенапряжение выделения водорода на металле, препятствуя водородной хрупкости [8].  [c.120]

Аналогичны те случаи скольжения, когда химическое изменение трущихся поверхностей металлов происходит в результате их взаимодействия со смазкой или с содержащимися в ней атомами, могущими реагировать с маслом. По-видимому, этим объясняется благотворное влияние на процесс скольжения смазочных масел, молекулы кото рых содержат легко выделяемые атомы хлора, серы, мышьяка, фосфора и др. В первую очередь при трении вследствие развития высокой температуры подвергаются химическим изменениям с образованием хлоридов, сульфидов, арсенидов, фосфоридов и других соединений наиболее нагруженные участки контакта. В результате химического изменейия соответствующие участки становятся мягче и опасность зацепления и износа предотвращается.  [c.217]

Здесь прежде всего должны быть упомянуты исследования по электрохимии неводных растворов галогенидов сурьмы и мышьяка, выполненные В. А. Плотниковым совместно с М. И. Усановичем и О. К. Куд-рой. Эти работы позволили установить однозначное соответствие между концентрационной зависимостью электропроводности и составом образующихся в системе комплексных и молекулярных соединений.  [c.175]


По химическим свойствам мышьяк является металлоидом при обыкновенной температуре не изменяется на воздухе, но при нагревании окисляется в трёхокись As20g. Мышьяк непосредственно соединяется с галоидами, образуя, например, As lg. При действии на мышьяк или его соединения водородом в момент выделения получается арсин — мышьяковистый  [c.356]

В присутствии меди образуются иглы соединения Си Зпй или СпоЗЬ (в зависимости от соотношения количества сурьмы и олова). Никель и кадмий, введённые в сплав в небольших количествах, не дают новых составляющих, но уменьшают размеры кристаллов ЗЬ5п. Мышьяк частично входит в твёрдый раствор в свинце, и избыток его вызывает постепенное исчезновение игл СпеЗп., , измельчение кристаллов 5Ь5п и, наконец, изменение их кубической формы на иглообразную. При одновременном присутствии кадмия и мышьяка образуются твёрдые серые кристаллы химического соединения из зтих элементов (см. вклейку лист VI, 3, а — д).  [c.202]

Бензин, уайтспирит, лигроин, керосин Мышьяк и его соединения в пересчёте на мышьяк. ..........  [c.498]

Грифе, Штедт и др. указывают, что местами появления межкри-сталлитных трещин являются уже имеющиеся в металле межкри-сталлитные пустоты, существование которых было доказано Там-маном и Бродмеером. На появление межкристаллитных трещин оказывают некоторое влияние содержащиеся в стали примеси фосфора, мышьяка, серы, азота и др. Повышение их концентрации понижает устойчивость стали против образования межкристаллитных трещин. Ряд исследователей в связи с этим обращают внимание на появление в структуре металла азотистых соединений, сосредоточенных по границам зерен.  [c.263]

Местами появления межкристаллитных трещин являются уже имеющиеся в металле межкристаллитные пустоты. На появление межкристаллитных трещин вл7яют содержащиеся в стали примеси фосфора, мышьяка, серы, азота и др. Повышение их концентрации снижает устойчивость стали против образования межкристаллитных трещин. В связи с этим обращается внимание на наличие в структуре металла азотистых соединений (нитридов), сосредоточенных по границам зерен.  [c.154]

Мышьяк As (Arseni um). Существует в виде нескольких модификаций наиболее устойчив серый мышьяк, имеющий металлический вид, обладающий большой хрупкостью. Распространенность в земной коре 5 10 >/о. = 814 С (36 am), 1кап (возгоняется) > 615° С, плотность 5,73. В природе встречается только в виде соединений, главным образом с серой. Для получения мышьяка из сернистых руд последние прокаливаются на воздухе, образовавшиеся окислы мышьяка восстанавливаются углем.  [c.379]

В воде и разбавленных кислотах мышьяк не растворяется, на воздухе слегка окисляется с поверхности. При нагревании на воздухе сгорает в мышьяковистый ангидрид AsaOj. Непосредственно соединяется с галогенами. При сплавлении с металлами образует арсе-ниды (например, MggAsg — арсенид магния, или мышьяковистый магний). При взаимодействии арсенидов с кислотами, а также при действии на мышьяк или его соединения водородом в момент выделения образуется арсин — мышьяковистый водород AsHg. Соединения мышьяка чрезвычайно ядовиты. Присутствие  [c.379]


Смотреть страницы где упоминается термин Мышьяк соединения : [c.428]    [c.426]    [c.65]    [c.333]    [c.482]    [c.163]    [c.149]    [c.194]    [c.357]    [c.367]    [c.367]    [c.437]    [c.385]   
Ингибиторы коррозии металлов (1968) -- [ c.0 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.357 ]



ПОИСК



Ингибиторы, состав и свойства мышьяка соединени

Мышьяк



© 2025 Mash-xxl.info Реклама на сайте