Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварные Влияние кислорода

Электродуговая сварка основана на использовании теплоты электрической дуги для расплавления металла. Для защиты расплавленного металла от вредного действия окружающего воздуха на поверхность электрода наносят толстую защитную обмазку, которая выделяет большое количество шлака и газа, образуя изолирующую среду. Этим обеспечивают повышение качества металла сварного шва, механические свойства которого могут резко ухудшиться под влиянием кислорода и азота воздуха.  [c.54]


Для защиты плавящегося металла от попадания вредных включений из окружающего воздуха на поверхность электрода наносится толстая защитная обмазка, выделяющая при плавлении электрода большое количество шлака и газов, благодаря чему плавящийся металл изолируется от окружающего воздуха. Этим обеспечивается высокое качество металла сварного шва, механические свойства которого могут резко ухудшиться под влиянием кислорода и азота воздуха (при отсутствии обмазки или при тонкой обмазке).  [c.154]

Чрезвычайно вредным оказывается любое загрязнение металла шва (помимо углерода), влекущее за собой образование по границам зерен хрупких пленок, имеющих пониженную температуру плавления. Вследствие такого загрязнения появляются трещины, которые могут возникнуть не только во время сварки, но и при эксплуатации, когда сварные соединения будут находиться под внешней нагрузкой. Особенно вредным оказывается действие серы, содержащейся в промышленной атмосфере, в покрытии, в поверхностной пленке на кромках металла, в загрязнениях маслами, краской и т. п. На склонность к образованию трещин оказывает влияние кислород, водород, а также легкоплавкие металлы (олово, свинец и др.). Поэтому успех сварки зависит от соответствующей чистоты наплавленного металла. Это требует строгого контроля режимов сварки, тщательной зачистки металла перед сваркой и других, ранее упомянутых мер.  [c.202]

При сварке металлическим электродом тепло, необходимое для расплавления основного металла и электродного стержня, образуется при горении между ними электрической дуги. Электрическая дуга обладает высокой температурой — до 4000—6000° С. Расплавленные основной и электродный металл перемешиваются в сварочной ванне, образуя при затвердевании сварной шов. На металлический электрод наносят специальное покрытие, которое, расплавляясь, создает газовую и шлаковую защиту сварочной ванны от вредного влияния кислорода и азота воздуха.  [c.6]

Электрическая дуга I горит между свариваемым металлом 2 и металлическим электродом (проволокой) 3. Горение дуги н плавление металла происходят под флюсом 4, защищающим расплавленный металл от вредного влияния кислорода и азота окружающего воздуха. Подача проволоки из бухты 5 производится автоматической сварочной головкой 6. Прн этом способе достигается высокая производительность (особенно при сварке деталей больших толщин) н обеспечивается высокое качество сварных соединений  [c.7]


С. меди и ее сплавов. Металлургич. медь обладает хорошими сварными качествами, но нек-рые примеси, напр, свинец, висмут, цинк, никель и олово, затрудняют выполнение С. В электролитич. меди отсутствуют присадки, предохраняющие от окисления, вследствие чего ее при С. можно легко пережечь. Кислород жадно поглощается медью при 1°пл. с образованием закиси меди, что может привести к красноломкости. Расплавленной медью механически поглощаются восстановительные газы, как водород, двуокись серы и окись углерода, к-рые остаются включенными в форме пузырей и значительно ослабляют прочность соединения. В связи с этим при газовой С. для избежания вредного влияния кислорода и поглощения газов требуется особенно тщательная установка пламени. Повышение крепости возможно для меди лишь путем соответствующей холодной обработки, а не путем изменения скорости ее охлаждения. Следует учитывать высокий размер усадки меди в 1,4%. Медь можно сваривать также на горновом огне или методом сопротивления. Затруднительно в данном случае избежать поглощения медью кислорода. При кузнечной С. в качестве присадки применяют буру для предохранения свариваемых частей от атмосферного воздуха. Чаще всего применяется газовая С. при помощи ацетиленокислородного пламени. Сварочному шву обычно придают У-образную или Х-образную форму со скосом кромок под углом друг к другу в 60° с зазором между ними ок. 5 мм. Кромки листов толщиной меньше 3 мм не скашиваются. В связи с сильным отводом тепла пламя приходится устанавливать почти вдвое более мощным, чем при С. стали. Часто для подогрева пользуются еще и второй горелкой. Вертикальные швы, как и листы толщиной > 5 мм, предпо-  [c.107]

Под влиянием кислорода воздуха и кислорода, подаваемого в сварочный факел в процессе сварки окисляются составные элементы чугуна (Ре, С, 51, Мп, Р, 5). Окислы, имеющие температуру плавления около 1350° С, затрудняют образование сварного шва. В этом процессе в первую очередь окисляется железо Ре до РеО. Целью раскисления является снижение в металле шва содержания не только закиси железа [РеО], но и других окисных составляющих. Окисел РеО реагирует со всеми примесями в чугуне по следующим реакциям  [c.123]

Влияние кислорода на свойства металла шва при сварке низкоуглеродистой стали. Содержание кислорода в сварных швах, выполненных на низкоуглеродистых сталях, обычно наиболее велико, так как их сваривают преимуш,ественно под высокомарганцовистыми флюсами — силикатами АН-348-А. ОСЦ-45, ФЦ-6 и др., которые обеспечивают интенсивный переход в металл шва кремния и марганца, восстановленных из флюса по реакциям (6) и (7) Восстановление марганца и особенно кремния в данном случае играет положительную роль, поскольку концентрация кремния в сварочной ванне более 0,2% приводит к подавлению реакции  [c.62]

Выше было показано вредное влияние кислорода, с одной стороны, и серы с фосфором — с другой, на свойства сварных швов, как при сварке сталей аустенитного, так и при сварке сталей перлитно-ферритного классов. При всех существующих различиях в природе этих вредных примесей у них имеются общие черты, в результате которых они оказывают вредное влияние на металл швов  [c.86]

В главе II рассмотрены механизмы, энергетические характеристики и кинетика замедленного разрушения сплавов титана и их сварных соединений (образования холодных трещин) при температурах, близких к комнатной. Особое внимание уделено анализу отрицательного влияния кислорода  [c.7]

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]


Выше (см. гл. 9) уже рассмотрено поведение отдельных компонентов сплавов и их влияние на качество получаемого металла шва. Однако в заключение надо сделать обобщение влияния на качество сварных соединений, так называемых вредных примесей, к которым относятся сера, фосфор, кислород, азот, водород, а в некоторых случаях и углерод.  [c.402]

Наиболее неблагоприятное влияние на состав, структуру и механические свойства металла шва и сварного соединения оказывают воздействие на расплавленный металл азота и кислорода атмосферного воздуха.  [c.303]

Пламя при использовании заменителей ацетилена имеет большие размеры, меньшую тепловую интенсивность, более низкую температуру и содержит больше кислорода. Поэтому сварной шов получается более окисленным с широкой зоной термического влияния.  [c.77]

Горячие трещины образуются непосредственно в сварном шве в процессе кристаллизации, когда металл находится в двухфазном состоянии. Причинами их возникновения являются кристаллизационные усадочные напряжения, а также образование сегрегаций примесей (серы, фосфора, кислорода), ослабляющих связи между формирующимися зернами. Склонность к образованию горячих трещин тем выше, чем шире интервал кристаллизации и ниже металлургическое качество стали. Углерод расширяет интервал кристаллизации и усиливает склонность стали к возникновению горячих трещин. Холодные трещины образуются при охлаждении сварного шва ниже 200 - 300 °С преимущественно в зоне термического влияния. Это наиболее распространенный дефект при сварке легированных сталей. Холодные трещины редко встречаются в низкоуглеродистых сталях и особенно в сталях с аустенитной структурой. Причина их образования — внутренние напряжения, возникающие при структурных превращениях (особенно мартенситном) в результате местной закалки (подкалки). Увеличивая объемный эффект мартенситного превращения, углерод способствует появлению холодных трещин.  [c.290]

При сварке трением во многих случаях характер окружающей среды не оказывает влияния на свойства сварного соединения. Экспериментально установлено, что при сварке титана (металла, весьма чувствительного к кислороду и азоту воздуха) в вакууме, в инертном газе — аргоне и в воздухе свойства сварного соединения оказывались одинаково высокими.  [c.42]

Горячие трещины могут возникать как в основном ме- , талле, так и в металле зоны термического влияния. Они могут быть продольными, поперечными, продольными с поперечными ответвлениями, могут выходить на поверхность или оставаться скрытыми. Вероятность образования горячих трещин зависит от химического состава металла щва, скорости нарастания и величины растягивающих напряжений, формы сварочной ванны и шва, размера первичных кристаллитов. Она увеличивается с повышением содержания в металле шва углерода, кремния, никеля, вредных примесей серы и фосфора. Повышению стойкости сварных швов, образованию горячих трещин способствуют марганец, хром и отчасти кислород, а также снижение величины и скорости нарастания растягивающих напряжений, что достигается уменьшением жесткости узлов, применением способа сварки с оптимальным термическим циклом, например, сварки с  [c.16]

На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси (Ог, Нг, В1, РЬ). Кислород, находящийся в меди в виде закиси СигО, является причиной образования горячих трещин. Закись меди образует с медью легкоплавкую эвтектику (СигО — Си) с температурой плавления 1064° С, которая располагается по границам кристаллитов сварного шва. В результате действия сварочных деформаций и напряжений шов может разрушаться по жидким прослойкам с образованием горячих трещин. Наличие сетки эвтектики по границам зерен делает шов хрупким и при комнатных температурах. Для расплавленной меди характерно сильное растворение газов, которые при затвердевании сварочной ванны могут вызвать пористость в случае относительно быстрого охлаждения и задержки процесса их выделения в атмосферу.  [c.431]

Неравномерность поступления кислорода к отдельным частям металлоконструкций, погруженных в воду, часто служит причиной образования на поверхности металла анодных и катодных участков. Лучше аэрируемый участок становится катодом. Этим объясняется низкая коррозионная устойчивость плохо проваренных, неплотных сварных швов, в которых имеются щели, так как металл в порах и щелях аэрируется хуже, чем другие прилегающие участки поверхности изделия. В этих местах образуются анодные участки, на которых происходит более интенсивное растворение металла. Подобное явление имеет место в металлических конструкциях с закрытыми узкими полостями (карманами), куда затруднен доступ кислорода и где трудно образоваться защитной пассивной пленке. Влияние различной концентрации кислорода у поверхности металла на распределение анодных и катодных участков в условиях коррозии, идущей с поглощением кислорода, настолько велико, что может действовать намного сильнее, чем структурная неоднородность металла.  [c.95]

Неметаллические включения (рис. 88), представляющие пустоты в металле шва, заполненные неметаллическими веществами (шлаками, окислами), как правило, присутствуют в металле сварных швов. Их состав, количество, размер, форма и распределение в металле шва могут оказать заметное влияние на механические свойства сварных соединений. Неметаллические включения можно разделить на включения, которые образуются в металле сварочной ванны в результате различных физико-химических процессов, и на включения, вносящиеся в сварочную ванну извне. Большинство неметаллических включений относится к первой группе и их образованию способствует обогащение жидкого металла примесями вследствие ликвационных явлений и понижение совместной растворимости примесей при охлаждении металла сварочной ванны. Извне неметаллические включения могут быть внесены в результате перехода в сварочную ванну части расплавленного покрытия в виде отдельных капель или вместе с электродным металлом за счет перехода окислов (соединение металла с кислородом), находящихся на поверхности свариваемых деталей, или неполного удаления шлако вой корки с поверхности предыдущего валика. Размеры неметаллических включений влияют на скорость их удаления из расплавленного металла и в значительной степени- на механические характеристики сварного соединения. Зародыши включений могут увеличиваться  [c.235]


Наиболее действенным средством, способствующим устранению неметаллических включений в сварном шве, является исключение или сильное снижение содержания в металле шва кислорода, азота и серы. Однако осуществить его на практике нельзя из-за технической сложности и экономической невыгодности. Поэтому применяются различные меры по снижению вредного влияния неметаллических включений уменьщение их количества, размеров и придания им благоприятной формы и места расположения в шве. Результаты последних исследований свидетельствуют о том, что скорость удаления неметаллических включений связана в первую очередь с процессом перемешивания металла, а размеры включений мало влияют на скорость их удаления. Поэтому необходимо применять меры к торможению роста неметаллических включений. Прежде всего — сокращать время существования сварочной ванны. Это снижает вероятность роста включений за счет диффузии и их объединения. Эффективным средством для уменьшения количества и размеров неметаллических включений, когда металл сварочной ванны не  [c.236]

Флюсы при дуговой сварке защищают сварочную ванну от влияния азота и кислорода воздуха, стабилизируют дуговой разряд, химически взаимодействуют с жидким металлом, а также легируют сварочную ванну и формируют поверхность сварного шва.  [c.227]

Наиболее широко в строительстве применяют основную мартеновскую сталь. Для элементов строительных конструкций, не подверженных динамической нагрузке и влиянию низких температур, ранее применяли бессемеровскую сталь. В сварных конструкциях эту сталь применяли только для малоответственных назначений. Применение кислорода в конверторном производстве позволило практически полностью заменить бессемеровскую сталь и значительно расширить область применения стали в строительной технике.  [c.141]

Сварка электронным лучом в вакууме. Этим методом свариваются тугоплавкие и химически активные металлы (молибден, вольфрам, тантал, ниобий, цирконий, ванадий, уран и др.) и сплавы, используемые в качестве конструкционных материалов. Способность этих металлов поглощать водород, азот и кислород при сравнительно невысоком нагреве и связанное с этим охрупчивание сварных соединений вызывает необходимость производить их сварку в среде, содержащей минимальные доли примесей этих газов. В связи с высокой температурой плавления и снижением пластичности в результате рекристаллизации металла, используются источники с высокой концентрацией тепла, обеспечивающие эффективное расплавление металла и минимальные размеры зоны термического влияния.  [c.368]

Кислород, в отличие от водорода, оказывает существенное влияние на первичную микроструктуру сварных швов аусте-нитных сталей. При дополнительном введении относительно небольших количеств кислорода типичная для швов на сталях 18-8 дезориентированная аустенитно-ферритпая структура приобретает ярко выраженную столбчатую направленность. Дальнейшее увеличение подачи кислорода приводит к исчезновению феррита и полной аустенитизации шва. Таким образом, характер влияния кислорода на структуру шва зависит от его концентрации. В относительно небольшой концентрации кислород, в противоположность азоту, препятствует образованию измельченной структуры. С увеличением содержания он действует аналогично азоту. Хотя внешние проявления действия обоих газов одинаковы (аусте-нитизация структуры сварного шва), механизм их действия различен. Азот, растворяясь в твердом растворе, непосредственно изменяет структуру шва. Действие кислорода является косвенным аустепитизация шва наступает вследствие интенсивного окисления ферритообразующих примесей.  [c.115]

Существующим ГОСТ содержание углерода в электродной проволоке ограничивается 0,1—0,18%. Наиболее распространенными тонкопокрытыми электродами являются электроды с меловой обмазкой, состоящей из мела и жидкого стекла. Такие электроды обеспечивают только устойчивое горение дуги. Для улучшения качества шва применяют электроды с толстыми обмазками, которые защищают расплавленную ванну при сварке от вредного влияния кислорода и азота воздуха, обеспечивают образующимся шлаком медленное остывание расплавленного металла (газы успевают выйти нз металла и его свойства улучшаются) и иногда легируют наплавленный металл сварного шва специальными добавками. Толстопокрьмые электроды бывают с шлаковой и газовой защитой. Для шлаковой защиты применяют шлаксобразующие компоненты полевой шпат, марганцевую руду, мел, титановую руду, каолин, и т. п. и, кроме того, раскисляющие компоненты в виде ферросплавов ферромарганец, ферросилиций и др.  [c.320]

Влияние кислорода в сварном И1ве на ударную вязкость сварных соединений при автоматической сварке под флюса.чи. ЛН-348.4 и  [c.72]

На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси (О2, Н2, Bi, РЬ и др.). Кислород, находящийся в меди в виде оксида ujO, является одной из причин образования горячих трещин в сварных швах. Двуоксид меди образует с медью легкоплавкую эвтектику ( uaO—Си), которая располагается по границам кристаллитов и снижает температуру их затвердевания. Такое же действие оказывают Bi и РЬ. Наличие сетки эвтектики по границам кристаллитов делает шов более хрупким при нормальных температурах.  [c.234]

Высокая чувствительность к вредному влиянию водорода. Расплавленная медь хорощо растворяет водород и при наличии в ней закиси меди СпаО подвержена водородной болезни . Сущность водородной болезни состоит в том, что водород, легко проникающий в расплавленную медь, реагирует с кислородом закиси меди с образованием водяных паров по реакции СпаО -Ь На ->-Си -f Н О. Водяные пары в данных условиях создают в затвердевшем металле больщое давление и вызывают появление волосяных трещин, которые могут привести к разрушению изделия. Кроме того, водород вызывает пористость сварных соединений в связи с различной растворимостью в расплавленной и твердой меди и образованием водяных паров.  [c.136]

Свариваемость среднеуглеродистой стали удовлетворительная, однако в сварном шве и зоне термического влияния могут образоваться закалочные структуры и трещины. Сварку выполняют слегка науглероживающим пламенем, так как даже при небольшом избытке в пламени кислорода происходит существенное выгорание углерода. Удельная мощность пламени должна быть в пределах 80—100 л/(ч-мм). Рекомендуемый способ сварки — левый, так как в этом случае металл не перегревается. При толщине металла более 3 мм следует проводить предварительный общий подогрев детали до 250—300 °С или местный нагрев до 650—700 °С. Присадочным материалом служит сварочная проволока марок, указанных для малоуглеродистой стали, и проволока Св-12ГС.  [c.104]

Несмотря на то, что исследованию данной группы сталей посвящено большое количество работ, некоторые вопросы до сих пор остаются открытыми. В частности, недостаточно изучены электрохимическое поведение стали при затруднении доступа к ее поверхности пассивирующих агентов (в основном кислорода воздуха) в условиях щелевой коррозии влияние питтин-гообразующих хлорид-ионов, анодной поляризации блуждающими токами и нестационарных режимов нагружения на коррозионно-усталостную долговечность сталей типа 18-10 и их сварных соединений.  [c.4]

Добавление кислорода к углекислому газу снижает содержание углерода в металле швов и подавляет вредное влияние углерода на появление пор, увеличивает глубину проплавления основного металла, улучшает внешний вид и формирование шва, а также уменьшает приваривание к свариваемым деталям и горелке (электрододержателю) брызг жидкого металла вследствие большого окисления их поверхности. С добавлением кислорода к углекислому газу снижается содержание элементов-раскислителей. Избыток кислорода в защитном газе приводит к образованию пор в металле шва. Увеличение содержания кислорода в наплавленном металле снижает механические свойства сварного соединения. Оптимальное количество кислорода в смеси с углекислым газом составляет 5... 15% при сварке низкоуглеродистых и низколегированных сталей с использованием сварочной проволоки Св-08Г2С, по условию обеспечения требуемых механических свойств сварных соединений.  [c.54]


Считают, что отрицательное влияние повышенных содержаний кремния на прочность и пластичность сварных швов связано с образованием на поверхности ауетенитных зерен пленки силикатов, ослабляющей связь между зернами. При содержании кремния в ауетенитных сталях менее 0,75% эти пленки образуются очень редко. Применение электродов с основным покрытием и уменьшение кислорода в пламени уменьшает возможность образования силикатных пленок по границам зерен.  [c.288]

В процессе затвердевания жидкой меди, содержаи ,ой кислород, UjO выделяется как составля ои1,ая эвтектики в виде узких оторочек на кристаллитах меди. Эго наблюдается как в сва])иом шве (фото 6.165), так и в зоне термического влияния основного металла (фото 6.161). С выделением эвтектики по границам кристаллитов связано охрупчивание мета.чла. Такие сварные соединения характеризуются малым углом изгиба.  [c.88]

Влияние легирования металла сварного шва осушествлялось за счет применения сварочных проволок различного состава. Однако суш,ествен-ных результатов легирование металла шва в пределах допустимых норм на порообразование при сварке простых сталей не дало. Применение высоколегированных сварочных материалов исключает порообразование в швах, однако оно не является приемлемым, так как изменяет механические свойства сварных соединений и не соответствует общепринятым нормам сварочной технологии. Односторонняя сварка заготовок после плазменной резки кислородом на флюсовой подушке с обратным формированием шва обеспечила получение качественных сварных швов. При таком способе можно получить сварные швы без пор, если заготовки вырезаны воздушно-плазменным способом, но только на толщинах не менее 14 мм, когда обеспечивается значительный объем сварочной ванны при меньших толщинах в швах образуются поры.  [c.106]

Коррозия стали в кислых растворах представляет собой, как известно, электрохимический процесс, протекающий с водородной деполяризацией, причем регулирующим фактором в данном случае является перенапряжение водорода. Различие в структуре отдельных участков сварного шва и наклепанного металла проявляется в кислой среде в значительно большей степени, чем в нейтральной, где регулирующим фактором коррозии является скорость диффузии кислорода к поверхности металла. Опыты ряда исследователей показали, что в растворе кислоты сварные соединения должны рассматриваться как многоэлектродная система, в которой шов и зона термического влияния сварки имеют более отрицательный потенциал и служат поэтому анодом, т. е. местом разрушения металла, тогда как основной металл играет роль катода. То же можно сказать и о протекающей в растворе кислоты коррозии металла с наклепанными и недефор-мированными участками.  [c.417]

Высокая химическая активность в сочетании с низкой теплопроводностью, высоким электросопротивлением и температурой плавления, склонность к росту зерна в околошовной зоне определяют особенности сварки титана и его сплавов. Большая химическая активность титана при высоких температурах по отношению к азоту, кислороду и водороду затрудняет его сварку. Необходимым условием для получения качественного соединения при сварке титана плавлением является полная двухсторонняя защита от взаимодействия с воздухом не только расплавленного металла, но и нагретого выше 600°С основного металла и шва. При нагреве до высоких температур титан склонен к росту зерна-. Для устранения этого сварку следует выполнять при минимально возможной погонной энергии. Вследствие загрязнения металла сварного шва газами понижается его пластичность, что приводит к образованию холодных трещин. Загрязнение металла шва водородом можно предупредить, применяя электродную или присадочную проволоку, предварительно подвергнутую вакуумному отжигу. Содержание водорода в такой проволоке не превышает 0,004—0,006%. Большое влияние на качество сварного соединения оказывает состояние поверхности кромок и присадочного металла. Для удаления окиснонитридной пленки, образующейся после термообработки, ковки, штамповки, используют опеско-струивание и последующее травление в смеси солей с кислотами или щелочами.  [c.146]

Диаграммы IV типа характеризуют высоколегированные метастабильные -сплавы. Они также претерпевают сначала диффузионное, а затем мартенситное превращение, однако при очень малых скоростях охлаждения а-фаза выделяется по границам зерен -фазы, а а -фаза — во внутренних участках. При более высоких скоростях охлаждения сохраняется метастабиль-ная -фаза. Следует заметить, что эти данные соответствуют участку зоны полной перекристаллизации основного металла с относительно невысокой максимальной температурой нагрева (1200°С). Исследования околошовной зоны и металла шва непосредственно на сварных соединениях показали, что степень устойчивости -твердого раствора в сплаве ВТ15 в этих более высокотемпературных зонах еще ниже. Это обусловлено прежде всего внутрикристаллической неоднородностью металла шва и обогащением границ зерен в околошовной зоне хромом и молибденом и обеднением алюминием, а также влиянием относительно высокого содержания кислорода и азота в сплаве.  [c.37]

При электродуговой сварке в среде защитных газов (сварка плавящимся электродом) используют аргон или гелий, а также смеси аргона и углекислого газа или же аргона и кислорода, последний понижает критический ток, при котором круинокапельный перенос металла переходит в струйный. Кислород окисляет углерод в сварочной ванне, а углекислый газ (когда вследствпе дпссоциа-щш в зоне дуги присутствует как СО,, так и СО) науглероживает металл, если концентрация углерода в сварочной ванне менее 0,10%. Такого рода влияние СО.2 может быть несколько скомпенсировано дополнительным введением в газовую смесь кислорода (табл. 6). Сказанное должно учитываться, если к сварному сое-  [c.106]


Смотреть страницы где упоминается термин Сварные Влияние кислорода : [c.6]    [c.9]    [c.402]    [c.201]    [c.274]    [c.16]    [c.214]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.304 ]



ПОИСК



Влияние кислорода

Кислород



© 2025 Mash-xxl.info Реклама на сайте