Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующие Кристаллическая структура

Кристаллическая структура основных легирующих влементов  [c.332]

При закалке из жидкого состояния (скорость охлаждения около 10 °С/с) в системе Y-Zr образуются метастабильные твердые растворы (а ) с ГПУ кристаллической структурой [3, 4]. В области концентраций 40-70 % (ат.) Zr фаза а сосуществует с метастабильной ОЦК фазой р. При меньших скоростях охлаждения на основе обоих компонентов образуются два типа твердых растворов с ГПУ структурой - а и а с меньшей концентрацией легирующего элемента. Со стороны Y фаза а ограничивается 10 % (ат.) Zr, фаза а простирается почти до 50 % (ат.) Zr [3, 4].  [c.432]


Для практического применения можно указать трехкомпонентные сплавы на основе Си — А1 и Си — 2п. Сплавы с добавкой четвертого легирующего компонента разрабатываются для получения мелкозернистых образцов. Их основные свойства не отличаются от свойств трехкомпонентных сплавов. Наиболее подробно исследованы сплавы Си — А1 — N1 и Си — 2п — А1. Их используют для разработки промышленных сплавов, поэтому ниже рассмотрены соответствующие диаграммы состояния, кристаллическая структура и методы определения температуры превращения.  [c.99]

Остановимся на нескольких факторах. Например, типичная кристаллическая структура — г.ц.к. — плотноупакованная. Это наилучшее расположение атомов для сохранения прочности до температур, очень близких к температуре плавления (Со приобретает структуру г.ц.к. при высоких температурах). Для самолетных двигателей критическим свойством является плотность, она колеблется вблизи 8,4г/см в зависимости от сочетания основы и легирующих элементов. 10%-ное снижение плотности от 8,67 до 7,87 г/см (от 0,31 до 0,28 Ib/in ) может втрое увеличить долговечность диска либо позволить значительно понизить его массу [И].  [c.31]

Регулирование фазового состава сталей. Реальные стали являются гетерогенными системами, содержащими в твердом растворе — металлической матрице — посторонние фазы (так называемые избыточные фазы и неметаллические включения). Избыточные фазы (к ним относят карбиды, нитриды, силициды, бориды) и неметаллические включения (оксиды и сульфиды) образуются в результате взаимодействия примесных и легирующих элементов сталей и отличаются от металлической матрицы химическим составом, кристаллической структурой и электрохимическими характеристиками. Несмотря на относительно небольшое количество (от сотых до десятитысячных долей масс.%) посторонние фазы вносят свой вклад в интегральную скорость анодного и катодного процессов и характер растворения металла.  [c.190]

Одним из основных факторов, определяющих величину энергии д. у. аустенита и устойчивость его кристаллической структуры, является химический состав, который определяет среднюю концентрацию легирующих элементов в твердом растворе.  [c.69]

Исследования многокомпонентных катодов на основе титана с различными легирующими добавками и покрытий, полученных с помощью этих катодов, показывают, что в многокомпонентных покрытиях сохраняются особенности структуры, присущие исходному катоду, и хотя содержание легирующих компонентов в покрытии незначительно (например, 0,28% (по массе) Si после четырехкратного легирования катода), изменение параметров кристаллической структуры титана (а=0,292 нм с=0,4726 нм с/а =1,624) и характерное перераспределение интенсивностей интерференционных линий, присущее исходному катоду, свидетельствуют о существенном влиянии легирующих компонентов на структ>фу ионно-плазменных покрытий.  [c.142]


Важность устойчивости кристаллической структуры и положительное действие специальных легирующих элементов проявляются также в мягких сталях в среде нитратов, в аустенитных сталях в хлористой и кислотной средах.  [c.337]

Другой путь целенаправленного изменения хода диффузионных процессов в зоне деформации при трении (кроме изменения свойств смазочной среды) основан на разной чувствительности энергии активации диффузии разных легирующих элементов к уровню искажений кристаллической структуры, определяемому плотностью дислокаций в поверхностных слоях.  [c.163]

Таким образом, легирующие примеси некоторых элементов в кристаллической структуре металлов, создающие донорно-акцепторные связи, уменьшают запретную зону между зонами заполненного и свободного уровней энергии и создают условия пату проводимости (униполярной проводимости) в некоторых веществах, в первую очередь в элементах четвертой группы таблицы Менделеева.  [c.33]

Рост зерна в деформированных сталях и сплавах, происходящий вследствие развития собирательной рекристаллизации, может приводить к значительному укрупнению кристаллической структуры. Однако следует учитывать, что нагрев металлов и сплавов в процессе обработки давлением не является окончательной операцией и сопровождается, как правило, последующей деформацией. В данном случае деформация значительно измельчает крупнокристаллическую структуру, образовавшуюся при нагреве и собирательной рекристаллизации. Отсюда можно заключить, что температура начала собирательной рекристаллизации не является потолком нагрева перед обработкой давлением. Поэтому при установлении температур обработки температуры начала собирательной рекристаллизации вследствие положительного влияния деформации должны учитываться с возможным повышением их в зависимости от величины последующей деформации. Температуры собирательной рекристаллизации жаропрочных сплавов и отдельных легирующих элементов определялись также рентгеновским методом.  [c.124]

Известно, что прочность и сопротивление деформированию растет при уменьшении размеров зерен. Величина упругой деформации микрообластей упрочненного сплава обусловливается не только возникновением тонкой кристаллической структуры зерна, но и свойствами кристаллов в исходном состоянии. Наибольшее количество примесей и легирующих элементов значительно повышает предел упругой деформации сплава.  [c.39]

Кристаллическая структура основных легирующих элементов  [c.326]

Приведенные преимущества вибрационной обработки металлов показывают, что этот способ позволяет эффективно измельчать кристаллическую структуру без применения легирующих элементов особенно эффективное измельчение зерна можно получить при ультразвуковой обработке расплава в интервале температур. Чем меньше интервал затвердевания сплава, тем больше измельчение кристаллической структуры. Этим объясняется эффективное воздействие вибраций на чистые металлы, у которых нет интервала затвердевания. Предполагается также, что при ультразвуковых вибрациях повышается скорость образования за-  [c.41]

Одним из недостатков ионной имплантации и метода радиационного легирования является одновременное с легированием образование в облучаемых кристаллах радиационных нарушений кристаллической решетки, что существенно изменяет электрофизические свойства материала. Поэтому необходимой стадией процесса при получении ионно-легиро-ванных и радиационно-легированных кристаллов является термообработка (отжиг) материала после облучения. Отжиг ионно-имплантированных слоев проводится для активирования имплантированных атомов, уменьшения дефектов кристаллической структуры, образующихся при ионной имплантации и радиационном легировании, и в конечном счете, для создания области с заданным законом распределения легирующей примеси и определенной геометрией. Другими недостатками данного метода легирования являются стоимость облучения и необходимость соблюдения  [c.265]


По структуре карбиды легирующих элементов можно подразделить на две группы с простой кристаллической решеткой (являющиеся фазой внедрения) и со сложной кристаллической решеткой в узлах которой расположены атомы металла и атомы С.  [c.163]

Взаимодействие легирующих элементов с железом определяется от типа и структуры кристаллической решетки и величины атомного радиуса легирующих составляющих.  [c.45]

Кристаллические решетки 3- и 7-латуни обнаружены в промежуточных фазах многих других систем. Юм-Розери [132] указал, что в кристаллических решетках этой серии отношение числа валентных электронов к числу атомов примерно одно и то же для различных легирующих металлов. При этом молярная доля не остается постоянной, если валентности компонентов отличаются от валентностей в системе Си — Zn. Так, например, структура  [c.11]

В течение ряда лет кафедра выполняет исследования магнитных материалов, главным образом ферритов. Исследование условий получения магнитных и электрических свойств никелевых, магниевых, магний-марганцевых, литиевых ферритов с присадками окислов редкоземельных элементов, скандия, иттрия, бора, индия, алюминия, висмута, а также анализ их электронно-кристаллической структуры показал, что влияние легирующих ионов заключается в изменении геометрии кристалла в связи с изменением электронно-кристаллической магнитной структуры ферритов (В. А. Горбатюк, канд. физ.-мат. наук Т. Я. Гридасова, П. Лукач, М. Димитрова). Введение 1% окиси скандия или индия в промышленный марганец-цинковый феррит марки 2000 НМ-1 вызывает повышение начальной магнитной проницаемости на 20—30% с одновременным понил ением диэлектрических и магнитных потерь присадки окиси висмута стабилизируют магнитные электрические свойства бариевых изотропных ферритов, а введение в те же ферриты окислов РЗЭ способствует повышению их магнитной инерции на 30—40%.  [c.80]

Второй слой — диффузионный. Его величина определяется способностью атомов легирующего элемента диффундировать в металлическую матрицу изделия. В связи с тем, что порошковые металлы отличаются повышенной дефектностью кристаллической структуры, скорость насьпцения за счет диффузии в порошковых сталях будет значительно больше, чем в кованых.  [c.482]

Полиморфное Р —> а-превращение может происходить двумя путями. При медленном охлаждении и высокой подвижности атомов оно происходит по обычному диффузионному механизму с образованием полиэдрической структуры твердого а-раствора. При быстром охлаждении — по бездиффузионному мартенситному механизму с образованием игольчатой мартенситной структуры, обозначаемой а или при большей степени ле-гированности — о.". Кристаллическая структура а, а, а " практически однотипная (ГПУ), однако решетка а и а " более искажена, причем степень искаженности возрастает с увеличением концентрации легирующих элементов. Есть сведения [1],  [c.700]

В связи с этим для изготовления высококачественных приборов необходимы монокристаллы германия и кремния высокой степени чистоты и совершенной кристаллической структуры. Для получения нужного типа проводимости кристаллы легируют в строго контролируемых микродозах.  [c.589]

Шуман провел классификацию переходных Ы-, Ad- и 5 -элементов периодической системы элементов по их способности образовывать те или иные кристаллические структуры [52] и предложил гипотезу, согласно которой е-фаза должна образовываться как термодинамически устойчивая фаза при легировании железа элементами с числом внешних электронов 7—9 и атомным радиусом, превосходящим атомный радиус железа, но не более 10%. При этом в областях, окружающих легирующий элемент, должны возникать высокие сжимающие напряжения, приблизительно 1000—1500 МПа на 1% (ат.) легирующего элемента, что и обеспечивает компактное построение ГПУ структуры [52, 53]. Однако эта гипотеза не объясняет возможности существования е-фазы в концентрационном интервале (15—25% Мп). Кроме того, среди переходных 4й-элемен-тов марганец имеет аномально больщой атомный радиус и несколько нарушает закономерность, установленную Шуманом для элементов 5 и 6-го периодов, однако, в сплаве с железом марганец относится к группе элементов, стабилизирующих е-фазу при нормальном давлении [53].  [c.36]

Рассмотренные выше данные о влиянии кристаллической структуры и химического состава стали на ее проницаемость для водорода получены для образцов в виде стальных мембран (раздел 1.3.1). Однако этот метод эксперимента никоим образом не характеризует количество поглощенного (окклюдированного) металлом водорода. Способность металла поглощать водород зависит от ряда факторов 1) плотности упаковки а сомов в кристаллической решетке металла (чем выше плотность упаковки, тем выше ее энергетический уровень и тем больше водорода в виде протонов может быть связано в решетке) 2) количества дефектов структуры решетки, наличия в ней коллекторов для накодления молекулярного водорода 3) величины зерна и ширины межзеренных прослоек 4) вида и количества легирующих элементов, формы, в которой они присутствуют з С1шаве.  [c.83]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]


С НИМИ. При последующем нагреве происходят сложные процессы диффузии элементов сплава из его внутренних слоев к поверхности через окисную пленку, а также диффузия кислорода через окисную пленку в сплав. При окислении многих металлов превалирует процесс диффузии ионов металла через окисную пленку, в результате чего последняя наращивается на основном металле. В некоторых случаях преобладает процесс диффузии кислорода через окисную пленку внутрь металла, например при окислении титана при высоких температурах. Диффузионные процессы зависят от строения пленки, во многих случаях рыхлой, с незаполненными узлами кристаллической структуры (вакансиями), градиента концентрации легирующих элементов, а также термодинамических условий, способствующих приближению системы к равновесию. С окисленной поверхности чистого металла в глубь него образуются слои окислов с постепенно уменьшающимся содержанием связанного кислорода (РегОз, Рез04, РеО в железе Т10г, Т120з, ТЮ в титане и т. д.). Окисление легированных сплавов происходит более сложным образом.  [c.124]

Элементы с атомным радиусом, отличающимся менее чем на 8 /о от атомного радиуса железа, образуют в сплавах с ним твердые растворы замещения с широкими границами взаимной растворимости. Полная же взаимная растворимость в твердом состоянии наблюдается в том случае, если введение легирующего элемента не сопровождается изменением концентрации валентных электронов, приходящихся на каждый атом сплава (железо и легирующий элемент им( ют одинаковую валентность), или увеличение электронной концентрации при вве-де1 ш элемента с большей валентностью не превосходит неко-тосого критического значения (Рг., = 1,36, Реа= 1,48), связанного с системой пространственного заполнения кристаллической решетки. Иногда указывается, что для полной взаимной растворимости необходимо, чтобы легирующий элемент имел одинаковую с 7- или а-железом кристаллическую решетку. Однако подобие кристаллической структуры при образовании  [c.275]

Упрочняющее действие азотирования обусловлено образованием а поверхностно слое дисперсных нитридов и карбонитридоа в результате взаимодействия азота и легирующих элементов. Кристаллическая структура и некоторые свойства нитридов приведены в табл. 17.  [c.1026]

Обычный легирующий компонент в цинковых сплавах — алюминий (до 5—10%). В системе А1 — Ъп возможно образование двух твердых растворов р-твердый расрор (почти чистый цинк) и а-твердый раствор на основе алюминия, но растворяющий до 83% гп (такой твердый раствор на основе алюминия может содержать 83% гп и только 17% А1). В определенном интервале температур и концентраций твердый раствор а распадается на два твердых раствора той же кристаллической структуры, богатой (аг) н бедной (гл) цинком.  [c.470]

Если Д1/ > О, то легирующий элемент отдает свои валентные электроны, стабилизирует кластеры если Д / < О, то элемент связывает свободныеэлектроны и затрудняет срастание кластеров. Соответственно при Д1/ > О данный элемент измельчает данную фазу, но дестабилизирует ее, делает менее устойчивой. Вообще любое принудительное измельчение кристаллической структуры приводит к увеличению вн)тренней энергии системы и, следовательно, уменьшению ее устойчивости в термодинамическом аспекте.  [c.421]

Большинство металлов образуют с углеродом один или несколько карбидов. Например, из железа и углерода получается соединение типа РезС — цементит. В присутствии легирующих элементов, таких как хром, марганец, никель, молибден и др. и в зависимости от содержания углерода и легирую1дих элементов в стали цементит образует с этими элементами более или менее обширные твердые растворы или замещается другими карбидами, которые отличаются от цементита составом стали и кристаллической структурой.  [c.85]

В сплавах системы А1—Mg (например, АЛ8, АЛ23, АЛ27-1) при давлении измельчается структура как твердого раствора, так и р-фазы. Наряду с этим происходит перераспределение легирующих элементов в сплаве, что приводит к изменению субмикроструктуры, постоянной кристаллической решетки твердого раствора и т. п.  [c.123]

Обработка образцов велась излучением лазера на неодимовом стекле с энергией импульса 9 Дж и длительностью 4 мс. При этом каждый локальный участок поверхности облучался различным количеством импульсов — от одного до пятнадцати. В результате воздействия лазерного излучения в техническом железе образовались зоны, отличающиеся по своим свойствам от исходного а-железа. Средняя глубина проникновения молибдена в матрицу составляет 450—500 мкм. При рассмотрении микрошлифов образцов обнаруживается четкая, неразмытая граница между зоной воздействия лазерного излучения и основным металлом. Данные измерения микротвердости зоны по ее глубине и в поперечном сечении на расстоянии от поверхности 200 мкм свидетельствуют о ее повышении в обработанной области в 1,5 раза по сравнению с микротвердостью а-железа. Результаты дюрометрического исследования показывают, что микротвердость по всей зоне воздействия излучения почти одинаковая, некоторое повышение ее наблюдается у нижней границы зоны. Повышение микротвердости и ее однородное распределение по всей области позволяют предположить наличие твердого раствора молибдена в а-железе. Рентгеноструктурный анализ показал наличие в обработанной зоне двухфазной структуры, которая имеет ОЦК решетки с различными периодами. Одна из них относится к а-железу, а вторая соответствует твердому раствору молибдена в а-железе с увеличенным межплоскостным расстоянием по сравнению с этим расстоянием в матрице. Вследствие того, что при растворении молибдена увеличиваются размеры кристаллической решетки железа, при точном измерении периода решетки можно определить содержание легирующего элемента в твердом растворе. Причем известно, что 1 % по массе молибдена увеличивает период решетки на 0,002 А.  [c.27]

Исследования были проведены на аустенитной нержавеющей стали Х18Н10Т, склонной к интенсивному деформационному старению. Трубчатые образцы диаметром 21 мм и толщиной стенки 1,5 мм испытывали при растяжении-сжатии (частота нагружения приблизительно 1 цикл/мин) на установке типа УМЭ-10 т, снабженной вакуумной системой и средствами исследования микроструктуры на поверхности образца [1]. Указанная установка оборудована также системой управления силовозбудителем для получения двухчастотного режима нагружения (частота около 20 цикл/мин) и автоматическим устройством для программного нагружения с временными выдержками на экстремальных уровнях нагрузки в полуциклах нагружения. Испытания были проведены при моногар-моническом малоцикловом нагружении, при нагружении с выдержкой 5 мин при максимальной (по абсолютной величине) нагрузке в полуциклах, а также с наложением нагрузки второй частоты в процессе выдержки при температурах 450° С и 650° С [2]. При исследованиях структуры использованы методы световой (для определения числа, размера и характера расположения частиц), ионной и просвечивающей электронной микроскопии (для определения характера распределения карбидов и легирующих элементов), электронной микроскопии со снятием реплик с зон изломов, а также методы рентгеноструктурного (для определения степени искаженности кристаллической решетки в зависимости от уровня нагрузки) и рентгеноспектрального анализа. Образцы исследовались в зонах разрушения.  [c.67]


При этом большинство легирующих добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения при температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метаста-бильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]

Подтверждением эффективности правила положительного градиента является научное открытие эффекта избирательного переноса тел, сделанное Д. Н. Гаркуновым и И. В. Крагель-ским. Изучая механизм взаимодействия твердого тела со смазками, авторам открытия удалось получить условия, при которых из такой системы, какую представляет собой, например, бронза, вследствие избирательного растворения активной смазкой удаляются анодно-легирующие элементы (цинк, олово, железо и др.). Таким образом, сплав, имеющий неоднородную, многофазную гетерогенную структуру или однородный твердый раствор, обогащается медью. В этом случае в кристаллической решетке меди образуются вакансии, причем, если количество этих вакансий превышает 10%, кристаллическая ре-  [c.89]

Железо, никель и в меньшей степени хром увеличивают коррозионную стойкость циркония, задерживая наступление стадии ускоренной коррозии как в воде, так и в паре. В том случае, когда цирконий загрязнен азотом, углеродом или другими вредными примесями, железо, никель и хром сообщают ему меньшую коррозионную стойкость, чем олово. Максимальная коррозионная стойкость достигается при добавлении в сплав 0,25% железа и никеля (в сумме) [111,231 111,243]. Увеличение суммарной концентрации этих элементов в сплаве свыше 0,5% приводит к ухудшению его коррозионной стойкости. В значительной степени стойкость сплавов, легированных железом и никелем, зависит от термообработки и структуры металла. Сплавы, легированные до 2% железом, никелем и хромом порознь или в сочетании друг с другом, имеют более высокую коррозионную стойкость в водяном паре при температуре 400— 815° С, чем кристаллический прутковый цирконий. Интересно отметить, что при введении в цирконий 0,1% никеля или железа и 0,5% платины коррозионные потери уменьшаются, но увеличивается количество водорода, выделившегося в процессе коррозии [111,228]. Последнее обстоятельство позволяет предполагать, что указанные легирующие компоненты действуют в данном случае как эффективные катодные присадки. Увеличение скорости катодного процесса при введении в цирконий этих металлов приводит к смещению стационарного потенциала в положительную сторону. При этом стационарный потенциал смещается в область пассивации и скорость коррозионного процесса соответственно уменьшается. По данным М. Е. Страуманиса [111,240], введение в плавиковую кислоту ионов платины приводит к пассивации циркония. Это еще раз подтверждает, что легирующие компоненты — железо и никель можно рассматривать как эффективные катодные присадки. Катодная поляризация смещает стационарный потенциал циркония и его сплавов в отрицательную сторону (в область активного растворения) и тем самым вызывает увеличение скорости коррозии [111,228]. В сплаве циркония, легированном 0,1% железа и 0,1% никеля, количество гидридов больше, чем в нелегированном. Следовательно, скорость катодного процесса разряда ионов водорода увеличивается при легировании циркония железом и никелем. Характер окисной пленки в этом случае, видимо, не является решающим в определении коррозионной стойкости циркония. Величина емкости при легировании циркония железом, никелем, оловом возрастает в 5—10 раз, в то время как скорость коррозии остается практически постоянной  [c.221]

Арсенид галлия (ОСТ 4.032.015—80) применяется для производства электронных приборов и эпитаксиальных структур. Арсенид галлия выпускается как в виде поликристаллических слитков (марка АГН-1), так и в виде моно-кристаллических слитков (остальные марки). Выращивают монокристаллы либо горизонтальной направленной кристаллизацией, либо вытягиванием по методу Чохральского из-под флюса. В качестве легирующих примесей используют теллур, олово, цинк и кремний. Монокристаллнческие слитки, легированные цинком, н.меют дырочный тип электрической проводимости, остальные — электронный. Слитки арсе-нида галлия различных марок различаются концентрацией основных носителей заряда (ОНЗ), допустимым отклонением концентрации ОНЗ (табл 83) от номинального значения (Ю--80 %), номинальными значениями диаметров слитков (20—50 мм), плотностью дислокаций (5-10 —8-10 м ). Ориентация продольной оси монокрнсталлИ" ческих слитков [111], [100], И01 Отклонение плоскости торцового среза  [c.576]

Титан может находиться в виде двух основных стабильных фаз, отличающихся строением кристаллической решетки. При нормальной температуре он существует в виде а-фазы с мелкозернистой структурой, не чувствительной к скорости охлаждения. При температуре выше 882 °С образуется Р-фаза с крупным зерном и высокой чувствительностью к скорости охлаждения. Легирующие элементы и примеси могут стабилизировать а-фазу (алюминий, кислород, азот) или р-фазу (хром, марганец, ванадий). Поэтому сплавы титана условно разделяют на три группы а, а + 3 и 3 сплавы. Первые (ВТ1, ВТ5-1) термически не упрочняются, пластичны, обладают хорошей свариваемостью. Вторые (ОТ4, ВТЗ, ВТ4, ВТ6, ВТ8) при малых добавках 3-стабилизаторов также свариваются хорошо. Они термически обрабатываются. Сплавы с 3-структурой, например ВТ15, ВТ22, упрочняются термообработкой. Они свариваются хуже, склонны к росту зерен и к холодным трещинам.  [c.199]

Реальные металлические материалы, как правило, являются по-ликристаллическими, то есть состоят из множества отдельных кристаллов, которые в общем случае имеют неправильную форму и называются кристаллитами или зернами. В отличие от идеальных кристаллов, в которых атомы кристаллической решетки расположены строго периодично, реальные кристаллы всегда имеют нарушения регулярности структуры (разупорядоченность), которые называются дефектами. Основными причинами отсутствия у реальных конструкционных металлических материалов идеального кристаллического состояния являются неравновесные условия кристаллизации металла, присутствие в его составе легирующих и примесных элементов, деформация кристаллической решетки вследствие воздействия на нее в процессе изготовления изделий механических, термических, радиационных и других факторов.  [c.23]

В подавляющем большинстве металлические конструкционные материалы являются многокомпонентными сплавами, в состав которых входят легирующие (вводимые специально для придания материалу необходимых свойств) и примесные (попадающие в материал с рудными материалами в процессе выплавки и металлурги-чес1сих переделов) элементы. Вступая друг с другом во взаимодействие компоненты сплавов могут образовывать фазы — однородные по структуре (кристаллическому строению) и составу (концентрации компонентов) области, ограниченные поверхностями раздела. Конструкционные материалы, как правило, содержат несколько фаз, относительное количество которых может существенно различаться.  [c.29]


Смотреть страницы где упоминается термин Легирующие Кристаллическая структура : [c.190]    [c.332]    [c.560]    [c.520]    [c.135]    [c.174]    [c.46]    [c.196]    [c.43]    [c.245]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.332 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте