Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия многокомпонентные

В области механики многокомпонентных гетерогенных материалов особую сложность представляет изучение адгезии между элементами композиции, которая оказывает существенное влияние на работоспособность материалов с защитными покрытиями, на несущую способность армированных систем и т. д. В свою очередь эта характеристика зависит от внешних условий, таких как температура и время, а также от вида напряженного состояния в элементах композиции вблизи границы раздела.  [c.155]


Для повышения износостойкости применяют весьма разнообразные способы насыщения поверхности металлов и сплавов, которые можно разделить на следующие насыщение химическими элементами (однокомпонентные, двухкомпонентные и многокомпонентные покрытия) покрытие химическими соединениями (карбидами, нитридами, окислами).  [c.37]

В связи с малым запасом алюминия в алитированном слое и быстрым переходом его в основной металл при высоких температурах, разработаны многокомпонентные покрытия типа  [c.92]

Результаты исследования влияния покрытий на никелевой основе приведены на рис. 54. Режим отжига покрытия после нанесения его на образцы был следующим температура 1050° С, продолжительность 4 ч, вакуум диаметр образцов 5,0 мм, толщина покрытия 60—80 мкм. Как и в случае алитирования, многокомпонентные покрытия снижают сопротивление термической усталости, но с уменьшением нагрузки различие в долговечности становится незначительным. Из исследованных вариантов состава покрытия на основе никеля наибольшую долговечность имело покрытие состава 17% А1, 10% Сг, 0,02% У.  [c.93]

Основным компонентом лакокрасочного материала, представляющего собой многокомпонентную систему, является пленкообразующее вещество, которое после нанесения на поверхность способно в результате химических или физических превращений образовывать прочное лакокрасочное покрытие и обусловливать его адгезию к подложке. В качестве таких веществ используют синтетические или природные олигомеры или высокомолекулярные соединения.  [c.43]

Из сказанного следует, что известные методы расчета электро- и теплопроводности, диэлектрической и магнитной проницаемости и плотности гетерогенных многокомпонентных систем могут быть использованы и для характеристики КЭП. При расчете необходимо учитывать геометрию включений, как это показано на примере покрытий Си—W [129].  [c.105]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]


Большое значение имеют стекловидные покрытия металла — эмали. Специфические требования к материалам таких покрытий привели к созданию многокомпонентных рецептур грунтовочных и основных эмалей. Для грунтовочных эмалей по стали используют в ос-  [c.81]

Взаимодействие нагретого газа с теплозащитными покрытиями обусловлено протеканием многочисленных и взаимосвязанных процессов. Теоретическое решение этой проблемы в общем случае должно основываться на решении системы дифференциальных уравнений, описывающих явление нестационарного тепломассопереноса в системе газ — тело. Этими уравнениями являются уравнения внешней газодинамики, уравнения ламинарного или турбулентного пограничных слоев в многокомпонентных реагирующих газовых смесях, уравнения нестационарной теплопроводности внутри многослойных теплозащитных покрытий, а также уравнения кинетики поверхностного взаимодействия.  [c.8]

Для нанесения многокомпонентных покрытий, в том числе и тугоплавких металлов в виде пленок, можно воспользоваться эффектом взрыва проволоки в вакууме под действием мощного импульса тока (от разряда конденсатора).  [c.244]

Широкое применение Ш-нитридов в качестве материалов полупроводниковой техники, электронной промышленности, химического приборостроения, для изготовления конструкционной керамики общего и специального назначения, в производстве твердых, износостойких материалов, абразивов, защитных покрытий и т. д. [1—4] обусловило развитие новых методов их получения (обзоры [3—18]), которые позволяют эффективно регулировать функциональные свойства нитридов путем направленной модификации их структурного и химического состояний. Синтезируемые при этом системы (в том числе в неравновесных условиях — например, в виде тонких пленок, покрытий, гетероструктур [12—14, 17,18]), включают большое число разнообразных дефектов, отличающих характеристики получаемого материала от свойств идеального кристалла. Очевидна роль дефектов в формировании эксплуатационных параметров многокомпонентных нитридных систем — керамик, композитов [2, 3, 9,16].  [c.34]

Существуют два основных пути получения композиционной структуры покрытий кристаллизация из легированного многокомпонентного расплава и спекание компонентов без их полного расплавления и гомогенизации расплава (рис. 3.2). При кристаллизации из расплава формируется близкая к равновесной гетерогенная структура. Наибольшее распространение получили гетерогенные эвтектические наплавленные слои, содержащие эвтектику и избыточные фазы (рис. 3.3). Эффективным приемом получения гетерогенной структуры является термическая обработка наплавки. Происходящее при этом дисперсионное твердение (выделение вторичных высокотвердых фаз) дополнительно упрочняет наплавленный слой.  [c.146]

В настоящее время для решения вопросов защиты поверхности деталей от износа, а также ремонта изнощенных деталей с одновременным улучшением эксплуатационных свойств поверхности нашли широкое применение защитные покрытия, наносимые на обрабатываемую поверхность различными методами газотермического напыления или наплавки. Обеспечение заданных свойств покрытий для конкретных условий эксплуатации деталей возможно при газотермическом напылении или наплавке как отдельных композиционных порошковых материалов, так и многокомпонентных механических смесей порошков различного гранулометрического состава.  [c.542]

Недостатками любого метода газотермического напыления или наплавки, использующего для нанесения покрытий порошковые материалы, является сложность обеспечения стабильности свойств и надлежащего уровня качества покрытий, получаемых из многокомпонентных механических смесей порошков, что вызвано сегрегацией компонентов при  [c.542]

Лакокрасочные покрытия —это пленки, прочно связанные с твердой поверхностью. Связь с поверхностью создается в процессе формирования пленки и обусловлена физико-химическими свойствами пленки. Лакокрасочные материалы представляют собой многокомпонентные смеси, содержащие пленкообразующие вещества, пигменты, наполнители, поверхностно-активные соединения, растворители и другие компоненты.  [c.122]

При многокомпонентном насыщении возможно создание барьерных слоев, тормозящих диффузионное рассасывание защитного покрытия при эксплуатации изделий при высоких температурах, что повышает ресурс работы изделий.  [c.352]


Среди применяемых средств защиты металлов от коррозии защитные покрытия получили наибольшее распространение, но их выбор и применение в каждом конкретном случае далеко не всегда научно обоснованы. Это объясняется многокомпонентно-стью системы металл-покрытие и влиянием различных факторов на поведение этой системы. Надо отметить, что электрохимический характер коррозии оборудования в отрасли является преобладающим в связи с присутствием воды в рабочих средах. Коррозионный процесс под покрытием — металлическим или лакокрасочным — также является электрохимическим по своей природе. Поэтому современные исследования направлены на изучение не только физико-химических процессов, происходящих в материале покрытий при контакте их с жидкостями и газами, но и электрохимических процессов в системах "металл-покрытие-электролит".  [c.6]

Внешний признак процесса сорбции агрессивной среды полимером — увеличение массы и объема. Традиционно скорость этого изменения определяют при разных температуре и концентрации растворов и парциальном давлении паров. Интенсивность сорбции обычно оценивают с помощью кинетических кривых и сорбционных изотерм. Увеличение дефектности устанавливают качественно, проводя повторную сорбцию жидкой среды на тех же образцах после их высушивания. Помимо того что среда, проникающая в полимер, вызывает набухание, возможен также процесс изменения структуры полимера и степени его упорядоченности без ощутимого изменения объема. Для многокомпонентных систем покрытий процесс сорбции может сопровождаться вымыванием отдельных компонентов низкотемпературных пластификаторов и модификаторов, дисперсных наполнителей и др.  [c.69]

Основными процессами, протекающими при контакте полимера с агрессивной средой, являются сорбция компонентов среды, химическая деструкция и растворимость полимера, адсорбция из него различных веществ — модификаторов, пластификаторов, добавок и др. Однако существующие методические трудности разделения каждого из перечисленных процессов на составляющие (например, сорбцию — на адсорбцию, абсорбцию, капиллярную конденсацию, осмос и др.) не позволяют получить в рамках одной модели точные количественные оценки защитного эффекта покрытия и особенно многокомпонентных систем, какими являются лакокрасочные материалы.  [c.83]

В состав коксующихся пластиков, которые yпoтpeбJ(яют в качестве теплозащитных покрытий,обычно входят элементы Н, С, Н, О. Исследование гетерогенных процессов на поверхности таких покрытий в силу многокомпонентности и пористости материала покрытия оказывается весьма сложным. Известно, что в результате разрушения коксующихся пластиков происходит  [c.226]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Щелочные растворы применяют главным образом при нанесении покрытий на коррозионно стойкую сталь атюминий титан, магний, различные неметаллы а также при необходимости осаждения многокомпонентных покрытий (сплавов) на основе никеля или кобальта (например никель кобальт-фосфорных или кобальт вольфрам фосфорных и других покрытий) При корректировании щелочные растворы могут работать длительное время благодаря наличию в их составе комплексообразователей (таких как лимоннокислый натрии и аммиак) Но в результате регулярного добавления гипофосфита в ванне >астет концентрация фосфитов Добавка хлористого никеля и аммиака увеличивает концентрацию хлористого аммония что нежелательно Так, в растворе при 8—9 следующего состава (г/л) хлористый никель 45 гипофосфит натрия 20 хлористый аммоний 45 лимоннокислый натрий 45 максимальная  [c.24]

Так как простое силицирование вследствие нелетучести высших окислов металлов не является эффективной мерой защиты ниобия и тантала [9], широкое распространение получили для их защиты многокомпонентные силицидные покрытия, содержащие относительно небольшие количества металла-основы. Это покрытия Ге—А1—81, Ре—Сг—81, Со—Т1—81, Мн—Т1—81, Мо—Т1—81 и т. д., наносимые газофазным диффузионным [10] и шликерным методами [И—13], причем в последнем случае фактически проводится диффузионное насыщение из обмазок с образованием диффузионно-покровных защитных композиций. Концентрация металла-основы в наружных слоях покрытий невелика. Такие покрытия разрабатываются для защиты тепловых  [c.5]

Известно, что для многокомпонентных систем одним из условий устойчивости фаз к дифференциации является то, что производная химического потенциала по концентрации больше или равна нулю [2, 3]. В рамках модели регулярных растворов в [4] получен критерий устойчивости фаз, согласно которому анализируется величина энергии смешения, т. е. энергия образования стеклообразного покрытия из исходных компонент (ДРГем)- Для АИ см О, т. е. при экзотермическом характере взаимодействия компонент, система не склонна к дифференциации. При положительных значениях энергии смешения система нестабильна.  [c.14]


Влияние покрытий на эксплуатационные характеристики жаропрочного сплава, применяемого при изготовлении лопаток газовых турбин, изучалось [223] на установке Коффина с построением кривых термической усталости. Для выяснения характера разрушения оценивали изломы и проводили металлографический анализ микрошлифов продольного сечения. Многокомпонентные покрытия СоСгА1 , КЮтА1 , Ni o rAlY наносились на образцы с применением электронно-лучевой технологии со скоростью конденсирования 2 мкм/мин.  [c.129]

Электрохимическое осаждение пленок. Для получения антикоррозионных, износостойких, декоративных и других покрытий на металлических деталях РЭА широко используется гальванический метод, основанный на осаждении метадла из соответствующих растворов при пропускании через них электрического тока. Так можно получать пленки меди, цинка, серебра, золота, кадмия, хрома и других металлов, а также многокомпонентные ме-талличгские сплавы.  [c.72]

Ущерб от коррозии может быть снижен как путем рационального выбора металла при конструировании оборудования и различных сооружений, так и осуществлением конкретных мер защиты. В обоих случаях необходимо знание механизма коррозионных процессов, протекающих в условиях эксплуатации. Среди применяемых средств защиты металлов от коррозии лакокрасочные покрытия получили наибольшее распространение, но их выбор и применение далеко не всегда научно обоснованы. Это объясняется многокомпонентностью системы металл—лакокрасочное покрытие и влиянием различных факторов на поведение этой системы.  [c.5]

Активное протекание процесса ИП у восстановленных галь-ванодиффузионным способом бронзовых деталей связано, невидимому, с особенностями состава и структурного строения слоя покрытия литая бронза является многокомпонентной, а покрытие двухкомпонентно.  [c.190]

В качестве коррозионно-стойких покрытий наиболее широко используются цннк, кадмий, алюминий, хром, никель, свинец, реже олово, благородные металлы, титан и др. Применяются комплексные и многокомпонентные покрытия на их основе [14],  [c.475]

С целью совершенствования процесса в Белорусском государственном университете (Минск) разработан способ восстановления изношенных вкладышей подшипников путем гальванического осаждения многокомпонентных функциональных покрытий. Способ обеспечивает необходимое сочетание свойств толщины, коэффициента трения, адгезии, микротвердости и др. Технология включает предварительную механическую обработку вкладышей, их обезжиривание, травление, осаждение тонкого никелевого покрытия на алюминиевую основу внутренней поверхности детали и осаждение антифрикционных сплавов Pb-Sn-Sb или Pb-Sn- u из борфтористо-водородных электролитов. Введение в свинцово-оловянные сплавы третьего компонента повышает их микротвердость, улучшает прирабатываемость, износостойкость и стойкость против эрозии.  [c.589]

Получение покрытий с заданными свойствами, в том числе и из многокомпонентных механических смесей порошков различного фану-лометрического состава, обеспечивается при использовании гибких шнуровых материалов (ГШМ). Они специально разработаны для использования в системах газопламенного напыления, а также для ручной газопламенной наплавки и представляют собой получаемый экструзией композиционный материал шнурового типа, состоящий из порошкового наполнителя и органического связующего, полностью исчезающего при нанесении покрытия - связующее сублимирует в процессе нафева при температуре 400 °С без какого-либо отложения на подложку. Прочность и эластичность гибких шнуров позволяет пользоваться ими так же, как и проволокой и наносить покрытия с помощью газопламенных аппаратов проволочного типа. Метод газопламенного напыления отличается экономичностью, простотой аппаратурного оформления и надежностью оборудования для нанесения покрытий, что позволяет использовать его там, где требуется соблюдение непрерывности и стабильности технологического процесса. В цеховых условиях процесс газопламенного напыления может быть механизирован или автоматизирован. Кроме того, небольшая масса и мобильность ручных аппаратов позволяет использовать их для обработки крупногабаритных деталей и металлоконструкций в полевых условиях.  [c.543]

Другую проблему использования оксидов составляет диффузия кислорода при высоких температурах. Высокая проницаемость кислорода делает указанные системы неэффективными для применения в качестве кислородных барьеров. Оксид кремния имеет самую низкую проницаемость кислорода и является лучшим материалом для использования в гачестве барьера. В связи с этим для создания защиты композита при температурах выше 1800 °С применяют многослойные покрытия наружный слой - жаростойкий оксид, внутренний слой - из стекловидного SiOj. Повышение температуры использования УУКМ связано с разработкой многокомпонентных покрытий, в состав которых входят дибо-рит гафния, диоксид гафния и иридий. Эти вещества имеют очень высокую температуру плавления  [c.239]

Широкое использование различных твердых покрытий возможно лишь при выполнении высоких требований к их физическим, химическим и механическим свойствам. Недавно были синтезированы и изучены новые трехкомпонентные составы покрытий, например, Ti-B-N, Ti-Al-N, Ti—Al-B, Ti-Si—N, Ti-Si-B, a также четырехкомпонентные тонкопленочные композиции Ti-B- -N, Ti-Al-B-N, Ti-Al-Si-N и др. Получены ультратвердые (70 ГПа), высоко износо- и коррозионностойкие тонкопленочные системы [5]. Высокие эксплуатационные характеристики этих покрытий обусловлены комбинацией нескольких факторов, таких как малый размер кристаллитов, большая объемная доля границ раздела, наличие микро- и макронапряжений, изменение взаимной растворимости неметаллических элементов в фазах внедрения, образование многофазных кристаллических состояний и межзеренных аморфных прослоек. В большинстве работ для получения многокомпонентных покрытий ис-  [c.478]

Когда состав покрытия становится более сложным, размер кристаллитов может уменьшаться до нескольких нанометров. Расширяется и взаимная растворимость элементов в фазах внедрения. В частности, показано, что фазы TiN, TiB и TiBj в многокомпонентных пленках на основе Ti-B-N могут растворять дополнительное количество соответственно бора и азота, а фаза TiN в пленках Ti—Ni N может растворять некоторое количество никеля [2, 7].  [c.480]

Циркуляционный метод позволяет получать качественные диффузионные многокомпонентные покрытия в химически чистой газовой смеси, без балластных добавок и попутного насыщения другими элементами. Процесс можно вести в безводородной (взрывобезопасной) галогенидной среде без выхода этих газов в окружающую атмосферу.  [c.215]

Многокомпонентные диффузионные покрытия циркуляционным методом можно получать либо последовательно, либо путем выравнивания активностей исходных материалов. Например, для одновременного насыщения поверхности детали алюминием и кремнием или алюминием и хромом в рабочую камеру установки следует загружать не чистый алюминий, а интерметаллиды FeAl или NiAl.  [c.215]

Техника ближайшего будушего потребует применения более прочных материалов для работы в условиях высоких скоростей, вызывающих разрушение металла в микрообъемах. В связи с возрастающими требованиями новой техники дальнейшие исследования в этой области должны быть направлены в первую очередь на разработку теоретических положений легирования сталей, стойких к гидроэрозии. Необходимо провести глубокие исследования для разработки физико-химической теории образования эрозионностойких многокомпонентных диффузионных покрытий. Следует изучить влияние напряженного состояния на интенсивность процесса гидроэрозии. Исследования необходимо проводить также в направлении изыскания эрозионно-стойких наплавок и удобных методов их нанесения. Наплавки могут быть использованы и для восстановления изношенных деталей и их упрочнения.  [c.8]



Смотреть страницы где упоминается термин Покрытия многокомпонентные : [c.127]    [c.14]    [c.39]    [c.190]    [c.94]    [c.267]    [c.234]    [c.477]    [c.479]    [c.482]    [c.482]    [c.367]    [c.243]    [c.393]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.441 ]



ПОИСК



Многокомпонентность

НАПЫЛЕНИЕ МНОГОКОМПОНЕНТНЫХ ПОКРЫТИЙ

Получение многокомпонентных покрытий на никеле и его сплавах циркуляционным методом



© 2025 Mash-xxl.info Реклама на сайте