Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фаза термодинамическая устойчива

Ее называют кривой равновесия. Очевидно, что для каждой фазы, взятой самой по себе, кривая равновесия (т. е. соответствующие ей температуры и давления) ничем не замечательна. Любая фаза термодинамически устойчива в точках этой кривой, и свойства ее там самые нормальные. Однако вблизи этой кривой, с одной ее стороны (для газообразной фазы выше А-В рис. 19) одна из фаз становится метастабильной, т. е. менее устойчивой, чем другая. По мере удаления от кривой равновесия степень метастабильности увеличивается, и наконец (на кривой а-Ь рис. 19), фаза становится термодинамически неустойчивой, т. е. вовсе не может существовать.  [c.137]


Составы шлаковых многокомпонентных фаз варьируются в широких пределах в зависимости от того, какие металлы или сплавы подвергаются процессу сварки. Так, алюмосиликатные флюсы, т. е. заранее приготовленные шлаки, удовлетворяюш,ие процессам сварки сталей, непригодны для сварки титана или алюминия, так как эти металлы могут восстанавливать компоненты шлака и тем самым изменять состав металла шва. Поэтому компоненты шлаковых фаз должны обладать достаточно высокой термодинамической устойчивостью.  [c.350]

Нейтральные компоненты шлаковых фаз представляют собой обычно фториды активных металлов, обладающие высокой термодинамической устойчивостью. В ряде случаев их совместные системы могут использоваться как бескислородные или фторид-ные шлаки.  [c.353]

Как показывается в статистической физике, коэффициенты устойчивости обратно пропорциональны флуктуациям различных физических величин. С приближением к критической точке флуктуации растут. За критической точкой существуют только устойчивые состояния, поэтому в этой области невозможно сосуществование фаз, имеющих границу раздела. Анализ термодинамической устойчивости закритической фазы привел  [c.247]

Непрерывные фазовые переходы обычно связаны с изменением симметрии системы, поэтому можно ввести характеризующий эту симметрию параметр порядка г, который равен нулю в более симметричной и отличен от нуля в менее симметричной фазе. Такой подход в теории непрерывных переходов был применен в работах Л. Л. Ландау. Вследствие нереалистического предположения о возможности разложения в степенной ряд энергии Гиббса в окрестности фазового перехода теория Ландау расходится с большинством экспериментов в этой области. Этой теории посвящена обширная литература, и мы не излагаем ее здесь . Физически последовательная теория непрерывных фазовых переходов была развита в работах В. К. Семенченко на основе представления о термодинамической устойчивости (см. 45).  [c.162]

Сформулируем условия термодинамической устойчивости системы, состояш,ей из нескольких компонентов. Такая система (примером ее является одна из фаз) принадлежит к числу открытых. Поэтому в левой части не-  [c.472]

Применительно к металлургическим системам практический интерес представляет анализ случая, в котором поверхностное натяжение расплава (а ) больше поверхностного натяжения твердого тела (а ). Этот случай реализуется при контакте жидкого металла с тугоплавкими, термодинамически устойчивыми химическими соединениями типа окислов, нитридов и карбидов. В этом случае поверхностное натяжение объемной фазы или натяжение толстой, пленки (ст ), которое определяется по уравнению сг = + <7тж (где a ш —межфазное натяжение на границе твердое тело — расплав), всегда больше и, следовательно, такие состояния термодина-  [c.134]


При прохождении через границы зон с различной термодинамической устойчивостью происходят существенные изменения термодинамических и теплофизических свойств системы, связанные либо с появлением новой фазы в докритической области, либо с непрерывным пе-.реходом от состояний, характерных для одной фазы к состояниям, свойственным другой, в закритической области. Эти изменения оказывают значительное влияние на характер теплообмена, и ими можно объяснить ряд аномальных явлений, обнаруженных в экспериментах [5.6].  [c.177]

Кинетика фазовых переходов, так же как и кинетика любых иных явлений, выходит за рамки собственно квази-стационарной термодинамики. В вопросах изменения агрегатных состояний термодинамика ограничивается рассмотрением равновесных систем, которые включают в себя уже сформировавшуюся новую фазу. Сам же ход формирования как микро-, так и макроскопических частиц вновь образующейся фазы, их роста и накопления остается за пределами анализа. В границах термодинамических представлений, как указывает Я- И. Френкель [Л. 50], под температурой агрегатного перехода (при заданном давлении) понимается не та температура, при которой фактически начинаются фазовые превращения, а та, при которой микроструктурные изменения, приводящие к возникновению новой фазы, прекращаются и система приходит в стабильное состояние. Очевидно, что и в стабильной системе изменение количественного соотношения между газообразной и конденсированной фазами возможно лишь при некотором нарушении взаимного равновесия элементов системы. Квазистационарная термодинамика допускает такие отклонения, однако каждое из них должно быть исчезающе мало. Это означает, что изменения макроскопического масштаба могут происходить лишь на протяжении бесконечно больших отрезков времени, во всяком случае по сравнению со временем восстановления нарушенного равновесия. В действительности же, как это отмечалось ранее, в быстротекущих процессах (например, при движении в условиях больших продольных градиентов давления) скорость изменения состояний среды, вызываемая внешними воздействиями, оказывается вполне сопоставимой со скоростью развития внутренних процессов, ведущих к восстановлению равновесия системы. Следует отметить, что особенно значительные нарушения равновесного состояния происходят в период зарождения новой фазы и начала ее развития. Мы здесь рассмотрим некоторые элементы процесса формирования конденсированной фазы, во-первых, ввиду его большого практического значения, во-вторых, для того, чтобы несколько осветить физическую картину явлений, приводящих в конечном счете к термодинамически устойчивому двухфазному состоянию.  [c.121]

Так, если в термодинамически устойчивой системе (фх <<Рх2) случайно в порядке флуктуации в старой устойчивой фазе возникло бы сгущение, отвечающее появлению новой фазы, то ио прошествии короткого промежутка времени новообразование исчезло бы — флуктуация рассеялась бы. В случае метастабильного состояния (фх1>ф12)> когда устойчивой является новая фаза, малые флуктуации, соответствующие г<г р, также являются неустойчивыми, несмотря на то, что в макроскопических масштабах новая фаза является единственно устойчивой. При размерах флуктуации r>r p ситуация меняется. Выигрыш в работе образования новой фазы за счет объемного члена начинает преобладать над проигрышем, вызванным поверхностным членом [формула (2-1)]. Таким образом, флуктуации, превышающие Гкр, устойчивы и не распадаются. Дальнейший рост новой фазы, происходит на таких устойчивых образованиях, поскольку всякое дальнейшее увеличение их размеров способствует увеличению устойчивости флуктуации.  [c.32]

Добавление к золю небольших количеств высокомолекулярных соединений (ВМС), которые не обеспечивают полного покрытия поверхности частичек золя, вызывает явление, противоположное коллоидной защите, — сенсибилизацию т. е. повышение чувствительности золя к действию электролитов. Сенсибилизирующее действие ВМС проявляется независимо от знака заряда поверхности частичек золей. Термодинамическая устойчивость таких растворов определяется тем, что связь молекул полимерного соединения с водой сильнее их взаимной связи в твердой фазе и тем, что они равномерно распределены во всем объеме растворителя.  [c.65]

В работе [50] проведен термодинамический анализ стабильных и метастабильных фазовых равновесий в сплавах системы Fe—Мп, богатых железом. Рассмотрено влияние давления на диаграмму бездиффузионных равновесий. Показано, что е-фаза, образующаяся в системе Fe—Мп при атмосферном давлении, является твердым раствором на базе 6-фазы чистого железа при высоком давлении при атмосферном давлении она метастабильна во всем интервале температур и концентраций. Как показал расчет, начиная с —4000 МПа, на фазовой диаграмме Fe—Мп появляется область стабильной устойчивости е-фазы эта область расширяется с повышением давления и относительная термодинамическая устойчивость наиболее плотной е-фазы увеличивается. При этом тройные точки смещаются к более высоким температурам и более низким содержаниям марганца [50].  [c.35]


Как уже отмечалось выше, пленка образуется при ф —0,15 в и анодно окисляется при ф 0,40 0,45 в. Очевидно, область потенциалов от —0,15 до 0,45 в можно считать областью пассивного состояния молибдена, а М0О2 — пассивирующим окислом. Эта фаза термодинамически устойчива в области потенциалов от —0,1 до 0,48 в. Свойства б-фазы МоО2 — низкое удельное сопротивление и высокая химическая стабильность в растворах кислот [12] — соответствуют свойствам пассивирующей пленки на молибдене.  [c.10]

Образование TiHa при взаимодействии металлического титана с ионами Н+ или молекулами Н2О может происходить везде ниже линии 8 (см. рис. 2.6). Однако только в областях, лежащих ниже линии 2, гидридная фаза термодинамически устойчива.  [c.29]

Семейство d-металлов или переходных металлов, заполняющих электронами подуровень d, образует многочисленные карбиды, имеющие важное промышленное значение. Особенно устойчивы карбиды d-металлов, не имеющих парных электронов в подуровне d. Они обладают высокой твердостью (Ti Zr Nb СгдзСв МоС W ), близкой к твердости алмаза, электропроводностью — электронной или полупроводниковой. Растворяясь в жидких металлах, они образуют сложные диаграммы плавкости и могут становиться упрочняющими фазами в зависимости от их термообработки. Термодинамическая устойчивость карбидов различна ЛЯ их образования и другие их свойства приведены в табл. 9.3.  [c.339]

Во-вторых, ограничения пригодны только для таких изменений состояния системы, при которых меняются интенсивные свойства фаз, так как иначе частные производные сопряженных переменных либо тождественно равняются нулю, как, например, (dPjdV)T при равновесии жидкость—пар в однокомпо-нентной системе, либо не существуют (бесконечны), как, например, Ср при температуре плавления индивидуального вещества. В гомогенных системах такие процессы также должны учитываться, что делалось выше при выборе и обосновании знака неравенства (12.29), но они, как нетрудно заметить, не влияют на ограничения (13.9) — (13.11) и другие, которые получаются из (12.29) при условии постоянства хотя бы одной из термодинамических координат системы. Этим исключается влияние процессов, единственным результатом которых было бы изменение массы системы. Так, неравенства (13.9) — (13.11), (13.21) относятся к закрытым системам и для их вывода важно знать значение не полного определителя формы (12.29), а его главных миноров. Последние должны быть определены положительно в термодинамически устойчивой системе (см. примечание на с. 123).  [c.128]

При электроосаждении сплавов довольно часто образуются неравновесные системы, характеристики атомной структуры которых не соответстнуют термодинамически устойчивому состоянию. Примерами таких фаз могут служить пересыщенные твердые растворы (ПТР), интерметаллические соединения, отсутствующие на диаграмме состояния, аморфные сплавы.  [c.53]

Соотношение Рашбрука связывает критические показатели основных термодинамических величин в докритической области. Метод термодинамической устойчивости позволяет найти соотношение для критических показателей и в закритической области. С этой целью, учитывая, что линия равновесия фаз (бинодаль) кончается в критической точке, введем показатель ц (вместо р), определяющий сингулярность термического расширения (дУ/дТ)р х (для системы жидкость — пар) или магнитокалорического эффекта (5У/ЗГ)д т (для магнетика). Тогда для закритической области получаем соотношение  [c.252]

В [18] были исследованы условия стабильности различных фаз твердого раствора, а именно условия потери термодинамической устойчивости неупорядоченной фазы, связанные с возникновением упорядоченного состояния, т. е, с появлением статических концентрациюниых волн, а также условия устойчивости отиосительпо образования антифазных доменов. Применение этих условий дает возможность в каждом конкретном случае сплавов замещения или внедрения найти возможные типы сверхструктур, которые могут возникнуть из данной неупорядоченной фазы, а также исследовать особенности фазовых переходов.  [c.180]

При наличии в бинарных системах, кроме фаз Лавеса, соединений с другой кристаллической структурой, более термодинамически устойчивых, возможны случаи, когда две бинарные фазы Лавеса не будут находиться в равновесии друг с другом. Возможно, такой случай наблюдается в системе Zr— Hf— Ni [26], гдена разрезе при 66,7 ат. % Ni тройных соединений со структурой фаз Лавеса не обнаружено, хотя в двойных системах Zr— Ni и Hf — Ni обнаружены фазы Лавеса со структурой П8]. Вопрос о фазе Лавеса ZrNia в тройных системах с участием этой фазы требует дополнительного исследования и обсуждения, поскольку очень часто эта фаза не обнаруживается в соответствующих системах, например Zr—W—№ [6].  [c.174]

Изучение влияния фазового состава и отдельных легирующих элементов - хрома, воль4рама, ванадия, ниобия, титана, а также совместных добавок Сг и Мо,Сг и /,Сг иМЬ, Сг и V, Сг и Т на водородоустойчивость сталей при температуре до 600 и давлении до 800 атм проводилось, как правило, на опытных плавках. Стали термически обрабатывались по режимам, обеспечивающим наиболее термодинамически устойчивое состояние карбидной фазы при заданных температурах испытания.  [c.153]

При этом большинство легирующих добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения при температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метаста-бильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]


Рассматривая диаграмму жидкость — пар реального вещества (например Р — п-диаграмму, изображенную на рис. 5.1), можно выделить в окрестности критической точки границы областей с различной термодинамической устойчивостью. Ниже критической точки такими границами являются бинодаль — кривая сосуществования двух фаз и спинодаль — линия, определяющая область абсолютной термодинамической неустойчивости, внутри которой справедливы следующие соотношения, не реализуемые в опыте [5.7]  [c.176]

В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

Спонтанная конденсация в потоке пара. Вопросам спонтанной конденсации уделяется большое внимание во многих работах (см., например, [2.49]). 13 дальнейшем, где это необходимо, будет использоваться теория луклеации Френкеля [2.56], согласно которой образование жидкой фазы из пара происходит в результате гетерофазных флуктуаций, выводящих систему за пределы исходного агрегатного состояния. В термодинамически устойчивой системе (Фг > Ф1) случайно возникшие зародыши новой азы исчезают — флуктуации рассеиваются . Известно, что в метаста-бильных системах (Фз < i), когда устойчивой является новая фаза, ге-терофазные флуктуации размером, меньшим критического являются неустойчивыми и распадаются. Напротив, флуктуации размером, большим г , устойчивы и потенциально способны к росту.  [c.53]

Правда, эти отклонения бывают кратковременными, так как по прошествии времени релаксации система переходит в наиболее вероятное равновесное состояние. Так, если бы в термодинамически устойчивой системе (крж1< фж2) случайно возникли зародыши новой фазы, то через короткий промежуток времени эти новообразования исчезли бы (флуктуации рассеиваются). В случае метастабильного состояния (q>x i> px2), когда новая фаза является устойчивой, малые гетерофаз-ные флуктуации являются неустойчивыми, несмотря на то, что в макроскопических масштабах новая фаза является единственно возможной. Жизнеспособными являются только те зародыши, размер которых превышает определенную критическую величину. Дальнейший рост новой фазы происходит па таких устойчивых образованиях, называемых ядрами конденсации. Применительно к случаю двухфазной среды, состоящей из пара и шарообразных капелек жидкости, впервые Томсоном было показано, что давление пара, находящегося в равновесии с каплей жидкости при заданной температуре 7, тем больше, чем меньше радиус г этой капли. Таким образом, возможны случаи, когда пар, перенасыщенный в обычном смысле (по отношению к капле бесконечно большого радиуса), оказывается ненасыщенным по отношению к капельке достаточно малого размера. Этим объясняется испарение мелких зародышей в ме-тастабильной системе.  [c.20]

В обычных условиях плавки термодинамически устойчивой фазой является оксид алюминия у = AlgOa, который не растворяется в алюминии и не образует легкоплавких соединений.  [c.302]

Теоретические основы процесса образования пленок и покрытий при термораспаде металлорганических соединений развиты Домрачевым с сотрудниками [33]. Показано, что осаждение покрытий из паровой фазы является сложным многостадийным процессом, включающим стадии, которые контролируются явлениями массо- и теплопереноса, адсорбции и десорбции, собственно стадию химической реакции термораспада металлоорганических соединений, а также стадии формирования твердой фазы и кристаллизации. Отмечено, что образование слоистых и столбчатых структур, так же как и рост крупных и нитевидных кристаллов, есть проявление нелинейных кинетических закономерностей в условиях, далеких от термодинамического равновесия. В таких случаях возникает неравновесная термодинамическая устойчивость металлорганического соединения по отношению к процессу распада, однако эта устойчивость соответствует достижению системой стационарного состояния, которое в общем случае может не быть устойчивым во времени и пространстве. Это состояние названо динамически устойчивьш неравновесным состоянием  [c.29]

В настоящее время наиболее действенной металлургической мерой борьбы с кристаллизационными трещинами является такой подбор химического состава шва, при котором будет обеспечено его двухфазное строение. Применительно к наиболее распространенным жаропрочным сталям, содержащим 10—15% Ni, речь идет об аустенитно-ферритной структуре. Для сталей с более высоким содержанием никеля ориентация на шов с первичным ферритом не может быть признана правильной. Как мы уже отмечали, чрезмерное легирование ферритообразующими злементами, неизбежное при желании lAieib феррит в высоконикелевом шве, приводит к резкому снижению пластичности металла шва, обусловленному появлением хрупкой эвтектической составляющей, а иногда и G-фазы еще в процессе сварки. Здесь более правильно стремиться к получению аустенитного шва, имеющего в своем составе вторую фазу в виде мелкодисперсных карбидов типа Nb , термодинамически устойчивых нитридов, например TiN, и, возможно, тугоплавких оксидов. В ряде случаев можно прибегнуть и к помощи боридной или карбоборидной фазы.  [c.219]

К кривым равновесия двух фаз вещества примыкают области существования мста-стабильных состояний (штриховые линии на рис. 45). Это значит, что в области 1, в которой строго термодинамически устойчивым является газообразное состояние, может при некоторых условиях существовать в полуус-тойчивом, метастабильном состоянии жид- Рис. 45  [c.141]

В заключение следует подчеркнуть, что термодинамическая устойчивость электрохимической системы сплав — электролит (при P,T= onst) определяется, по меньшей мере, двумя параметрами и двумя переменными (см. уравнение (1.17)), т. е. двумя стандартными потенциалами компонентов, отношением активностей ионов в электролите и отношением активностей компонентов в сплаве. Только при соответствии всех этих величин может уетанавливаться обратимый электродный потенциал, означающий равновесие фаз. При нарушении же этого соответствия развиваются электрохимические реакции, которые в конечном счете восстанавливают равновесие. Частным случаем таких превращений может быть СР одного из компонентов (чаще всего электроотрицательного), приводящее к изменению количественного состава или даж полному распаду сплава.  [c.28]


Шуман провел классификацию переходных Ы-, Ad- и 5 -элементов периодической системы элементов по их способности образовывать те или иные кристаллические структуры [52] и предложил гипотезу, согласно которой е-фаза должна образовываться как термодинамически устойчивая фаза при легировании железа элементами с числом внешних электронов 7—9 и атомным радиусом, превосходящим атомный радиус железа, но не более 10%. При этом в областях, окружающих легирующий элемент, должны возникать высокие сжимающие напряжения, приблизительно 1000—1500 МПа на 1% (ат.) легирующего элемента, что и обеспечивает компактное построение ГПУ структуры [52, 53]. Однако эта гипотеза не объясняет возможности существования е-фазы в концентрационном интервале (15—25% Мп). Кроме того, среди переходных 4й-элемен-тов марганец имеет аномально больщой атомный радиус и несколько нарушает закономерность, установленную Шуманом для элементов 5 и 6-го периодов, однако, в сплаве с железом марганец относится к группе элементов, стабилизирующих е-фазу при нормальном давлении [53].  [c.36]

Большое влияние фазовой структуры на коррозионное поведение сплавов можно также иллюстрировать данными по исследованию сплава Ti—15 % Мо [42]. Сплавы этого состава после отпуска при 550 °С имеют двухфазную структуру (а- -р), где а-фаза имеет гексагональную решетку, свойственную чистому титану, а р-фаза — объемно центрированную кубическую. При коррозии двухфазного сплава в активном состоянии в 40 %-ной H2SO4 а-фаза, более бедная молибденом и менее термодинамически стабильная, преимуш,ественно растворяется, р-фаза, более устойчивая в этих условиях, накапливается на поверхности. Если р-фаза не представляет собой основного фона структуры, то ее накопление не приводит к образованию сплошного за-  [c.65]

Для всех исходных составов j MgO+(l—д ) РегОз при 0,48 независимо от давления кислорода в газовой фазе (в пределах 0,5—10 з атм) термодинамически устойчива только однофазная шпинель.  [c.79]


Смотреть страницы где упоминается термин Фаза термодинамическая устойчива : [c.95]    [c.24]    [c.507]    [c.186]    [c.387]    [c.33]    [c.30]    [c.41]    [c.559]    [c.229]    [c.288]    [c.165]    [c.11]   
Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.551 ]



ПОИСК



Бинодаль, спинодаль, критическая точка. Термодинамическая устойчивость фазы

П фазы

Устойчивость фазы



© 2025 Mash-xxl.info Реклама на сайте