Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Получение покрытий растворимостью

Получению покрытий из пирофосфатных электролитов препятствуют следую-щ,ие затруднения невысокая растворимость в воде пирофосфатных комплексных соединений, пассивирование анодов и разложение пирофосфата при повышенных температурах. Заменой натриевых солей калиевыми удается повысить растворимость пирофосфатов в воде и получать качественные покрытия при более высоких плотностях тока.  [c.13]


В гальваническом производстве для различных операций технологических процессов получения покрытий применяются растворимые и нерастворимые аноды. Основные характеристики растворимых анодов приведены в табл. 2.3, а нерастворимых в табл. 2.4.  [c.25]

Щелочные электролиты (pH 11 —14) характеризуются хорошей рассеивающей способностью, возможностью получения покрытий большой толщины. Они допускают использование как растворимых золотых, так и нерастворимых анодов. При большой концентрации цианида получаются покрытия высокой чистоты. Выход металла по току составляет 65—80 %. К недостаткам этих электролитов можно отнести накопление в процессе их эксплуатации карбонатов, которые следует периодически удалять, необходимость вести электролиз при нагревании и, самое главное — большую токсичность, что требует применения специальной очистки промышленных стоков.  [c.105]

Получение защитных вольфрамовых покрытий методом водородного восстановления фторидов металлов находит широкое применение для самых различных целей [1, 2]. Особый интерес представляет легирование вольфрамовых покрытий с целью повышения жаропрочности и пластичности. Таким уникальным действием обладает рений [3]. Легирование вольфрама рением в области растворимости снижает температуру перехода вольфрама в хрупкое состояние, замедляет рекристаллизацию и увеличивает работу выхода электронов в вакууме, что важно для ряда отраслей техники.  [c.50]

На участках поверхности металла без покрытия обе частичные реакции вначале стимулируются одинаково. Получение отложений на этих участках решающим образом зависит от места образования продуктов коррозии, т. е. от того, образуются ли они непосредственно на поверхности металла или сначала возникают на некотором удалении в коррозионной среде как твердые оксиды. Получить ответ на этот вопрос можно, если учесть возможности поступления компонентов, участвующих в реакции. Через 1а обозначается скорость образования ионов металла [см. формулу (2.4)], через Jx — скорость массопередачи компонентов, участвующих в реакции и образующих поверхностный защитный слой. В случае Ja>Jx будет проходить реакция осаждения в среде напротив, при соотношении Jaповерхности металла. Ввиду затрудненной растворимо-  [c.132]

Для получения грунтовочных покрытий часто применяют сополимеры с содержанием 30—50% винилиденхлорида, обладающих хорошей растворимостью в лаковых растворителях.  [c.52]

Кроме того, эти методы не применимы для контроля толщин слоев покрытий, полученных горячим способом, так как образующиеся при применении этого способа промежуточные слои, состоящие из сплавов переменного состава, отличаются иной растворимостью и иными магнитными свойствами, чем наружный слой.  [c.544]


Некоторые сорта Бату и Ост-Индии содержат воскоподобные вещества, и поэтому лаки на нпх получаются мутными, а пленки — матовыми. Такие лаки можно применять в качестве мебельных, для получения матовой поверхности покрытия. Из-за различия свойств смол я изменения растворимости восков при старении лаков из них трудно приготовить лаки с одинаковой степенью матовости пленок.  [c.167]

Фенольные смолы горячей сушки. Растворы специальных термореактивных фенольных смол щелочной конденсации широко применяют для покрытий горячей сушки. Для получения этих смол в растворимом состоянии реакцию смолообразования прерывают, когда смола еще растворима в растворителях. Растворы смол наносят на покрываемые объекты, затем подвергают их горячей сушке при определенной температуре в течение определенного времени. В результате нагревания завершается реакция смолообразования или конденсации, и смоляная пленка становится неплавкой и не растворимой в растворителях.  [c.207]

Силиконовая смола 804. Смола 804 высыхает на воздухе без отлипа. Для получения более твердой и менее эластичной пленки, чем пленка смолы 802, ее нагревают в течение 1 часа при 250°. Сиккативы обычно к этой смоле не добавляют, но при применении 0,05% цинка можно сократить продолжительность горячей сушки. Покрытия, содержащие катализатор, мало стабильны при хранении. Растворимость смолы 804 аналогична растворимости других смол этого ряда, но ее совместимость несколько отлична. Она полностью совмещается с льняным и тунговым маслами, термопластичными фенольными смолами, меламино-формальдегидными смолами, метакрилатами и этилцеллюлозой. Смолу 804 применяют в производстве как покрытий, так и изоляции, когда требуется более быстрая горячая сушка.  [c.656]

Порошок TiOa (размер частиц 0,03—1 мкм) успешно применяли для получения покрытий со свинцом и сплавом РЬ—Sn (50—100 кг/м ). Устойчивая суспензия сохранялась при интенсивном перемешивании и обязательном присутствии указанных выше растворимых добавок.  [c.215]

В покрытиях из вольфрама и молибдена была обнаружена слоистость в тех случаях, когда содержание углерода в г окрытиях было больше предела растворимости. В составе слоев был найден свободный углерод, соответствующие карбиды и осаждаемый металл. Кислород отсутствовал, если температура подложки при нанесении покрытий была выше 900 К. Это связано с тем, что при температурах выше 900 К кислород с вольфрамом молибденом и углеродом образует лет учие соединения -оксиды, которые возгоняются. В хромовых покрытиях в составе неметаллических прослоек наряду с карбидами присутствуют и оксиды хрома. Неметаллические прослойки в медных покрытиях в основном состоят из окридов меди. Оксидные прослойки в медных покрытиях наблюдаются при температурах получения покрытий меньше 800 К, при которых оксиды меди устойчивы в слабовосстановительной среде. Типичная картина слоистого металлического покрытия, образовавшегося в результате внедрения в его состав элементов рабочей среды, приведена на рис. 27. При изменении содержания примесных компонентов в среде количество неметаллических прослоек в покрытиях изменяется. Увеличение содержания этих компонентов (ухудшение вакуумных условий или напуск соответствующих газов) приводит к увеличению количества неметаллических прослоек и к уменьшению числа металлических прослоек на единицу длины поперечного сечения покрытия.  [c.75]

Полиоксиметилен (полиформальдегид) относится к таким полимерам, которые, обладая ценными эксплуатационными свойствами, не могут быть использованы для лакокрасочных покрытий, вследствие малой растворимости. Несмотря на то что существуют способы получения покрытий на основе полиоксиметилена, их нельзя считать приемлемыми для широкого внедрения в промышленность, поскольку речь идет о низкоконцентрированных растворах полиоксиметилена в горячем га-хлорфеноле, обладающем высокой токсичностью. Поэтому единственным путем для практического применения полиоксиметилена для лакокрасочных покрытий является использование органодисперсий [ИЗ].  [c.115]

Для получения покрытий электроосаждением используются водорастворимые пленкообразователи, представляющие собой олигомерные электролиты, способные растворяться в слабощелочных водных растворах и терять растворимость при переходе в кислотную или солевую форму [R OOH или R( OO)nMe, где п 2].  [c.10]


Увел1ичение pH приводит к увеличению степени нейтрализации карбоксильных групп пленкообразователя, что вызывает рост заряда, приходящегося на единицу молекулярного веса, вследствие повышения диссоциации. При этом увеличивается отталкивание одноименных зарядов и повышается растворимость пленкообразователя в воде. Однако в сильнощелочной среде водная система настолько стабильна (число ионизированных групп, приходящихся на структурную единицу раствора, максимально при минимальном размере структурных единиц), что очень трудно перевести ее в кислотную форму, и поэтому получение покрытий электроосаждением затруднено. Кроме этого, при высоких значениях pH образуются гидроокиси металла, что препятствует образованию на аноде осадка пленкообразователя [61, 62, 196].  [c.78]

Никель обычно осаждается из смешанных растворов сульфата и хлорида никеля с использованием растворимых анодов. Величина стационарного потенциала коррозии чистых никелевых анодов показывает, что без наложения тока они находятся в ванне в пассипном состоянии, в то время как в работающей ванне такие аноды под действием хлоридов корродируют с образованием питтингов (рис. 6.3), Во всех растворах сульфатов никелевые аноды находятся в пассивном состоянии и нерастворимы. Растворению способствуют добавки к никелю небольших количеств серы илн углерода, которые вызывают нарушение пассивности (деполяризованные аноды). На никелевых анодах образуются мелкие частицы анодного шлама . Основную массу этого шлама можно собрать с помощью анодных частиц корзин (чехлов) из тонкосплетенной ткаии, а для удаления остальных необходимо проводить непрерывную фильтрацию раствора. В противном случае коррозионная стойкость полученного покрытия резко ухудшается. Никель можно использовать также в виде мелких кусочков (крошка), помещенных в корзины, изготовленные из титановой сетки. Титан в этих условиях находится в пассивном состоянии и его поверхность надежно изолирована от протекания анодного тока. В то же время электроны, образующиеся при растворении никеля, способны переходить через контакт типа металл — полупро-водиик с корзиной во внешнюю цепь. Аиод-  [c.336]

Процесс гальванического получения покрытий заключается в выделении металлов из водных растворов их солей при воздействии постоянного электрического тока и осаждения этих металлов на поверхности защищаемых изделий. Покрываемые изделия являются катодами. Анодами могут служить пластины осаждаемого металла (растворимые аноды), пластины графита или же металла, не растворимого в электролите (нерастворимые аноды). В первом случае, при замыкании электрической цепи, металл на аноде растворяется, а из раствора на катоде выделяется такое же количество металла, так что К01щентрация раствора соли в процессе электролиза практически не изменяется. При проведении процесса с нерастворимыми анодами постоянную концентрацию раствора поддерживают периодическим введением требуемых количеств соответствующей соли.  [c.275]

В большинстве случаев нет необходимости в дополнительной сшивке высокомолекулярных полимеров для достижения необходимых свойств пленок. Однако, некоторые растворимые полимеры средней молекулярной массы сшивают по реакционноспособным группам, имеющимся в полимерной цепи. На физические свойства пленок из высокомолекулярных полимеров способ их получения или физическая структура полимера влияют в незначительной степени. Так, автомобильные покрытия, полученные из растворов акриловых полимеров и из неводных дисперсий, в целом невозможно различить несмотря на то, что метод нанесения, условия формирования покрытий и т. д. могут сильно различаться. В боль-цгинстве случаев выбор материала определяется стоимостью всего процесса получения покрытия, а не только ценой материала. Необходимость в обеспечении конкретных требований к покрытию нужно учитывать при выборе из альтернативных составов.  [c.21]

Гальванические покрытия. Принципы получения гальванических покрытий основаны на осаждении на поверхности защн-гцаемых металлов катионов из водных растворов солей при пропускании через них постоянного электрического тока от внешнего источника. Защищаемый металл при этом является катодом, а анодами служат пластины осаждаемого металла (растворимые аноды) либо пластины графита или металла, нерастворимого в электролите (нерастворимые аноды). В первом случае при замыкании электрической цепи металл анода растворяется, а из раствора на катоде выделяется такое же количество металла, так что концентрация раствора соли в процессе электролиза практически ие изменяется. При проведении процесса с нерастворимыми анодами постоянную концентрацию раствора поддерживают периодическим введением требуемых количеств соответствующей соли.  [c.319]

Добавки в электролит № 3 роданистого калия и сегнетовой. соли применяются для осаждения с растворимыми анодами и с применением реверса. Корректирование электролитов, работающих с нерастворимыми анодами, заключается в добавлении концентрата, приготовленного так же как и обычный электролит. Электролит № 4 применяют для получения толстых осадков. Электролит № 5 является этилендиаминовым электролитом, в который золото вводится в виде сульфидного комплекса, причем покрытия получаются зеркально блестящие, но более пористые, чем из цианистого электролита. На практике этот электролит из-за этилендиамина не может быть применен.  [c.43]

Для получения эластичных покрытий рекомендуется электролит с сульфаминовой кислотой. Для этого 10—40 г диаминодинитрнт-платины растворяют при нагревании в 15—200 мл водного раствора сульфаминовой кислоты. Электролиз ведут при плотности тока 2,1 — 10,7 А/дм и температуре 65—100 С. Покрытия с высокой эластичностью получаются из солянокислого раствора, причем с растворимыми платиновыми анодами, что значительно упрощает работу электролита. Состав раствора (г/л) при режиме процесса следующий  [c.68]


Исследование физико-химических свойств покрытий невозможыо без изучения кинетических процессов, происходящих при формировании системы гетерофазное покрытие—подлояжа [1 ]. Образование стеклообразного покрытия включает в себя химическое взаимодействие, растворимость и взаимную диффузию исходных компонент. При его формировании необходимо оценить склонность полученной системы к фазовому разделению и прогнозировать возможный состав фаз. В данном сообщении рассмотрены термодинамические и кинетические характеристики процесса формирования покрытия диффузионным путем.  [c.14]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]

Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде при эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо PtO, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной.  [c.204]

Электрофоретическое нанесение лакокрасочных материалов, растворимых в воде, представляет собой усовершенствованный способ погружения, недостатки которого устранены действием электростатического поля. Электрофорез основан на ориентированном перемещении коллоидных частиц в диэлектрической среде. При наложении электрического тока возникают два процесса. Первый — это электролиз, характеризующийся перемещением ионов, образовавшихся при диссоциации электролита. Второй — собственно электрофорез, т. е. движение коллоидных частиц под действием электрического поля в среде с высокой диэлектрической постоянной. Частицы в соответствии со своей полярностью движутся к одному из электродов. Отрицательно заряженные частицы движутся к аноду, т. е. к изделию. На аноде или в непосредственной близости от него происходит потеря электрического заряда и коагуляция частиц. Одновременно с электрофорезом происходит и электроосмос, т. е. процесс, при котором под действием разности потенциалов из лакокрасочного материала вытесняется диспергирующий агент, например вода, и слой загустевает. Технологическим достоинством этого способа является возможность обеспечения высокой степени автоматизации, при которой потери лакокрасочного материала не превышают 5%. Достигается равномерная толщина слоя, которую можно регулировать в пределах 8—45 мкм. Слой не имеет пор и видимых дефектов. Коррозионная стойкость его примерно в 2 раза выше, чем у лакокрасочных покрытий, полученных способом погружения. Линия, в которой использована такая технология, в основном состоит из оборудования для предварительной подготовки поверхности, оборудования для непосредственно электрофоретического нанесения, включая соответствующую промывку, и оборудования для предварительной и окончательной сушки лакокрасочного покрытия при температуре 150—220° С в течение 5—30 мин. Способ нашел применение в автомобильной промышленности, на предприятиях по производству мебели, металлических конструкций для строительства и в других областях.  [c.87]

Система алюминий — углеродное волокно. По данным [90] алюминий практически не растворим в углероде, а растворимость углерода в алюминии не превышает 0,05% по массе при 1300— 1500° С. Главной реакцией, определяющей взаимодействие углеродного волокна с алюминием, является реакция образования карбида AI4 3. Обычно алюминиевые композиции, армированные углеродными волокнами, получают методами пропитки расплавом [169, 211]. Углеродные волокна не смачиваются расплавами на основе алюминия до 1100° С. При этой температуре волокна растворяются в расплаве на 40—60% своего объема и полностью теряют прочность. Количество карбидной фазы в материале, полученном при температуре самопроизвольного смачивания, настолько велико, что при последующем хранении образцов в течение нескольких дней они самопроизвольно разрушаются в результате выделения ацетилена при реакции карбида с влагой. Если пропитываются волокна с никелевым или медным покрытием, то последнее интенсивно растворяется в расплаве, и волокна разунроч-няются после контакта с расплавом в течение 2—5 мин на 40— 50% исходной прочности. Подобное же явление отмечено в работе [128], авторы которой обеспечивали смачивание путем химической обработки поверхности углеродных волокон.  [c.85]

Известно использование растворимых добавок для получения определенных КЭП. Этилендиаминтетрауксус-ная кислота и ее соли (например, трилон Б) в количестве 15—30 кг/м эффективно стимулируют включение частиц (смол и неорганических веществ — SiOj, ZrSi04, алюмосиликатов) в покрытия. Наиболее эффективны катионы больших радиусов ( s+, Rb+, NH4+, К+), но их действие не универсально.  [c.58]

Разработана технология получения нетускнеющих покрытий серебром [25, 31] из электролитов, содержащих растворимые соединения неосаждаемого металла (Be, Mg, Al, Ti, Zr). При этом используют электролиты, pH которых близки к pH образования основания или гидроксида указанного металла. Полное осаждение оснований происходит при pH выше указанных значений на 1,2—2,0 ед. Из иодидного И-2 (рН = 5,5) и цианидфер-ратного (pH = 9,4) электролитов, содержащих 0,005— 0,5 М сульфатов бериллия и магния, при г к=25 А/м получены покрытия толщиной до 10 мкм, которые при испытаниях имели степень потемнения всего 1 балл. Контрольные покрытия из чи стого электролита при незначительном содержании в нем бериллия (мМ раствор) имели степень потемнения 5 баллов.  [c.201]


Известно, что для получения мелкозернистых или блестящих покрытий высокого качества необходима низкая концентрация ионов. Поэтому в электролитах используют наиболее прочные. комплексные ионы, константы ионизации которых находятся в пределах от Ы0 до 1 10 , причем наиболее ценными являются электролиты, содержащие наиболее прочные комплексы (циа-нидные, аминовые, пирофосфатные и др.). Таким образом, вместо растворимых комплексных соединений для приготовления электролитов можно использовать труднорастворимые соединения, особенно в тех случаях, когда по различным соображениям растворимые комплексные соединения малопригодны (из-за отсутствия подходящего химического соединения, токсичности, дефицитности и т. д.). Например, известно использование сульфата стронция в качестве источника не разряжающихся на катоде ионов сульфата в саморегулируемых электролитах хромирования. Предложен [149] способ электро-осаждения антифрикционного сплава Ag—РЬ из электролита следующего состава (кг/м )  [c.217]

Фтооопласт-26 (МРТУ 6-05-906-63) марок Ф26 (для получения пленок и изделий) и Ф26Л (для термостойких лаковых покрытий). Отличается растворимостью в органических растворителях, например в смеси ацетона, этилацетата и бутилаце-та а при 40—50° С.  [c.106]

Весьма перспективны сплавы магния с бериллием. Растворимость бериллия в магнии весьма незначительна (0,05%). Хотя сплавы этой категории (магноксы) обнаруживают повышенную коррозионную стойкость, они, однако, ограничивают верхний предел температуры тепловыделяющих элементов до 450—460° С. В покрытиях же, полученных совместной конденсацией магния с бериллием, бериллия содержится больше, чем указано выше, поэтому этот сплав имеет большую коррозионную стойкость. Их коррозионная стойкость так значительна, что они временно могут переносить действие угольной кислоты при температуре, превышающей точку плавления магния (650° С) на 100 — 150° С. Защитные свойства оксидной пленки, образующейся на сплаве, улучшаются обогащением ее окисью бериллия это происходит в процессе дистилляции.  [c.331]

Покрытия на основе поливинилхлорида. В основе этих покрытий лежит полимер винилхлорнда СН2 = СНС1, сравнительно дешевого и недефицитного соединения. Тем не менее собственно поливинилхлорид не находит широкого применения в качестве защитного покрытия в связи с малой его растворимостью в органических растворителях, недостаточной адгезией и малой морозостойкостью. По этой причине в качестве покрытия используется продукт хлорирования полихлорвинила — перхлорвиниловая смола, в значительной мере лишенная недостатков поливинилхлорида. Перхлорвиниловая смола является основой для получения негорючих, химически стойких покрытий, широко используемых во многих отраслях техники.  [c.231]

ФОТОРЕЗИСТЫ — материалы органич. и неорганич. происхождения, чувствительные к оптич, излучению видимого или УФ-диапазона применяются в фотолитографии для получения рельефного покрытия заданной топологии. Формирование в слое Ф., нанесённого на к.-л. подложку, рельефных областей заданной конфигурации происходит в результате его локального экспонирования и последующего проявления. При локальном экспонировании в Ф. идут физ.-хим. превращения с изменением размера, структуры или полярности молекул, ведущие к изменению свойств покрытий и возможности удаления при проявлении облучённых или необлучённых участков. Е сли в результате экспонирования хорошо растворимыми становятся облучённые участки и они удаляются в процессе проявления, то Ф. наз. позитивным если в процессе проявления удаляются необлучённые участки, Ф. наз. негативным. Полученное таким способом рельефное покрытие служит защитой нижележащего рабочего слоя от воздействия травлений.  [c.358]

Сложность химического состава суперсплавов приводит к тому, что при одинаковых условиях проведения процесса нанесения покрытия на подложках из разных сплавов будут формироваться разные покрытия. Например, вследствие более низкого значения коэффициента диффузии алюминия в кобальте по сравнению с никелем одно и то же покрытие на кобальтовых сплавах будет тоньше, чем на никелевых. Даже при нанесении покрытий на никелевые суперсплавы разного состава "одинаковые" покрытия могут иметь разные характеристики, особенно по своему фазовому составу в диффузионной зоне. Монокристаллические сплавы, например, обычно не имеют в своем составе элементов, модифицирующих границы зерен (С, В и Zr), из-за отсутствия самих границ зерен. Соответствующим образом меняется и природа диффузионной зоны должен обязательно существовать другой, кроме образования карбидов, механизм адаптации в фазовой структуре покрытия основных металлических элементов, концентрация которых в NiAl превь1шает предел растворимости. Для получения желаемой структуры покрытия полезно осуществлять параллельную разработку как сплава для подложки, так и материала покрытия.  [c.93]

Широкое использование различных твердых покрытий возможно лишь при выполнении высоких требований к их физическим, химическим и механическим свойствам. Недавно были синтезированы и изучены новые трехкомпонентные составы покрытий, например, Ti-B-N, Ti-Al-N, Ti—Al-B, Ti-Si—N, Ti-Si-B, a также четырехкомпонентные тонкопленочные композиции Ti-B- -N, Ti-Al-B-N, Ti-Al-Si-N и др. Получены ультратвердые (70 ГПа), высоко износо- и коррозионностойкие тонкопленочные системы [5]. Высокие эксплуатационные характеристики этих покрытий обусловлены комбинацией нескольких факторов, таких как малый размер кристаллитов, большая объемная доля границ раздела, наличие микро- и макронапряжений, изменение взаимной растворимости неметаллических элементов в фазах внедрения, образование многофазных кристаллических состояний и межзеренных аморфных прослоек. В большинстве работ для получения многокомпонентных покрытий ис-  [c.478]

Многие покрытия на основе красок широкого потребления подвергаются действию воды, органических растворителей, жиров и смазочных масел способность красок противостоять воздействию этих продуктов определяется главным образом составом и структурой пленкообразователя. Слабая щелочеустойчи-вость масляных пленок обусловливается легкой омыляемостью триглицеридов, являющихся сложными эфирами во время старения пленки ее щелочеустойчивость еще более снижается вследствие образования в ней кислых продуктов окислительной деструкции. Водостойкость масляных плецок горячей сушки выше, чем пленок, высохших при нормальной температуре, так как пленки, полученные горячей сушкой, содержат меньше продуктов окислительной деструкции. Некоторые из этих продуктов растворимы в воде, и все они имеют высокую полярность и сродство с водой. Пожелтение масляных пленок при старении протекает у пленок воздушной сушки значительно энергичнее, чем у пленок горячей сушки особенно сильное пожелтение наблюдается у пленок, процесс старения которых протекает в отсутствие света.  [c.145]


Смотреть страницы где упоминается термин Получение покрытий растворимостью : [c.150]    [c.247]    [c.151]    [c.152]    [c.118]    [c.131]    [c.65]    [c.8]    [c.80]    [c.77]    [c.228]    [c.92]    [c.334]    [c.589]    [c.600]   
Композиционные покрытия и материалы (1977) -- [ c.217 ]



ПОИСК



Получение покрытий

Растворимость



© 2025 Mash-xxl.info Реклама на сайте