Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Долговечность скольжения

Надежность и долговечность подшипников скольжения зависят прежде всего от диаметра и длины вкладыша. Выбор оптимальной длины вкладыша производят по отношению его длины к диаметру lid, имея в виду, что диаметр вкладыша определяется диаметром цапфы вала.  [c.307]

Долговечность подшипников скольжения не зависит от частоты вращения (в отличие от подшипников качения, долговечность которых снижается пропорционально повышению частоты вращения).  [c.328]


Пример 2. Долговечность передачи винт --гайка скольжения определяется ее износо-  [c.21]

Уменьи]ение зазоров по центрирующим диаметрам при обычном сложном нагружении (включающем радиальную составляющую или изгибающий момент) существенно уменьшает путь скольжения и является эффективным средством повышения долговечности.  [c.132]

Основным кинематическим условием, которому должны удовлетворять профили зубьев, является постоянство мгновенного передаточного отношения передачи. Этому условию удовлетворяют многие классы кривых. Для обеспечения высокого КПД, прочности и долговечности колес профили должны обеспечивать малые скорости скольжения и достаточные радиусы кривизны в точках контакта. Профили должны допускать легкое изготовление, в частности нарезание простым инструментом независимо от числа зубьев колес.  [c.151]

Подшипник обычно работает в режимах качения в нагруженной зоне и скольжения в ненагруженной. В связи с этим он имеет повышенный коэффициент трения. Долговечность игл относительно невысока после длительной работы иглы получают огранку.  [c.345]

Основными критериями работоспособности ременных передач являются тяговая способность и долговечность. Тяговая способность определяется силами сцепления между ремнем и шкивами. Расчет ремня основан на кривых скольжения (рис. 23.10), построенных в координатах коэффициент тяги ср — относительное упругое скольжение Коэффициент тяги представляет относительную нагрузку  [c.266]

Работоспособность и долговечность опор скольжения зависят от возникающего в них трения оно характеризуется величиной коэффициента трения  [c.422]

При высоких скоростях резко возрастают центробежные силы, между шкивом и ремнем при его набегании возникает воздушная подушка, что снижает тяговую способность, увеличивает скольжение ремня и снижает его долговечность.  [c.507]

Достоинства подшипников скольжения а) работоспособность при очень высоких скоростях, когда подшипники качения имеют неприемлемо малую долговечность б) сравнительно небольшие размеры в радиальном направлении в) бесшумность г) сохранение работоспособности в химически активной среде, в воде, при загрязненной смазке. К этому следует добавить, что наличие разъема в подшипниках скольжения также определяет некоторые области их применения, например в качестве опор коленчатых валов двигателей внутреннего сгорания, где подшипники качения, являющиеся неразъемными, нельзя использовать.  [c.380]

Основными недостатками ременной передачи являются невозможность выполнения малогабаритных передач (для одинаковых условий диаметры шкивов примерно в 5 раз больше диаметра зубчатых колес) некоторое непостоянство передаточного отношения, вызванное зависимостью скольжения ремня от нагрузки повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня (увеличение нагрузки на валы в 2—3 раза по сравнению с зубчатой передачей) низкая долговечность ремней (в пределах от 1000 до 3000 ч).  [c.416]


От чего зависит долговечность работы подшипников скольжения и какие меры д.чя ее увеличения принимают  [c.538]

Достоинства подшипников скольжения малые габариты в радиальном направлении, хорошая восприимчивость ударных и вибрационных нагрузок, возможность применения при очень высоких частотах вращения вала и в прецизионных машинах, большая долговечность в условиях жидкостного трения, возможность использования при работе в воде или агрессивной среде.  [c.220]

Осевые силы снижают долговечность шарикоподшипников, так как увеличивают угол контакта, вызывая скольжение шариков. В ответственных конструкциях производят замер осевых сил с помощью специальных силоизмерителей.  [c.453]

При работе всухую разрушение контактирующих поверхностей происходит вследствие чрезмерного нагрева, износа и отслаивания (на неметаллических колесах). Наличие геометрического скольжения катков также сказывается на долговечности фрикционных передач. Расчетом на прочность необходимо определить такие габариты передачи, при которых контактные напряжения не будут превосходить допустимые.  [c.260]

Таким образом, для червячной передачи при большой скорости скольжения характерно интенсивное трение витков червяка о зубья червячного колеса. Поэтому их материалы должны образовывать антифрикционную пару. Обычно червяки делают стальными (особенно долговечны передачи со стальными закаленными и шлифованными червяками), а колеса — бронзовыми (Бр. ОФ, АЖ и т. п.).  [c.300]

При приближении к основной окружности относительное скольжение на ножке становится очень большим. Поэтому в малых колесах ножка изнашивается сильнее, чем в больших. Для начальной точки, лежащей на основной окружности, относительное скольжение теоретически становится равным бесконечности. Следовательно, в колесах с наименьшим числом зубьев ножка зуба малого колеса, для которого начальная точка эвольвенты является крайней точкой активного профиля, в отношении износа находится в чрезвычайно невыгодных условиях. По той же причине в колесах с подрезанной ножкой зуба ножка меньшего колеса также подвергается интенсивному износу, что является дополнительным, ос нованием против допущения подреза. Для уменьшения износа необходимо, чтобы крайние точки активной линии зацепления не только не переходили за предельные точки Л и В линии зацепления, но не находились бы и вблизи их. Нормальные колеса в отношении износа зубьев невыгодны. Поэтому в ответственных передачах, где условия надежности и долговечности приобретают особое значение, исправленному (корригированному) профилю необходимо отдать преимущество перед нормальным даже в тех случаях, где исправление зацепления не вызывается условиями подреза зуба.  [c.189]

Долговечность ремня определяется в основном его сопротивлением усталости, которое зависит не только от значений напряжений, но также и от частоты циклов напряжений, т. е. от числа изгибов ремня в единицу времени. Под влиянием циклического деформирования и сопровождающего его внутреннего трения в ремне возникают усталостные разрушения — трещины, надрывы. Ремень расслаивается, ткани перетираются. На сопротивление усталости ремня оказывает влияние и высокая температура, которая повышается от внутреннего трения в ремне и скольжения по щкивам. Для уменьщения напряжения изгиба [см. формулу 1 ЛА)] рекомендуется выбирать возможно больший диаметр малого шкива й, что благоприятно влияет на долговечность, а также и на тяговую способность передачи.  [c.251]

Достоинства подшипников скольжения. 1. Надежно работают в высокоскоростных приводах (подшипники качения в этих условиях имеют низкую долговечность). 2. Способны воспринимать большие ударные и вибрационные нагрузки вследствие демпфирующего действия масляного слоя. 3. Работают бесшумно. 4. Имеют сравнительно малые радиальные размеры (см. рис.  [c.309]

Соответственно и методы восстановления утраченной работоспособности будут различными шлифование шейки под подшипник скольжения, восстановление шлицев, правка вала, его замена при поломке. Долговечность сложного изделия должна оцениваться с учетом сроков службы (наработки) отдельных его элементов. При этом необходимо установить причины, которые определяют предельное состояние и продолжительность эксплуатации изделия.  [c.23]


В качестве примера разработки блок-схемы возникновения отказа на рис. 11 показан упрощенный вариант такой схемы для направляющих металлорежущих станков. Как известно, направляющие скольжения, которые служат для перемещения столов и суппортов, играют в станках особую роль, так как от их точности и долговечности в большой степени зависит точность обработки [153]. Для обеспечения надежности работы станка необходимо оценить возможность возникновения отказа по точности по вине направляющих. Энергия, действующая на станок и на направляющие, в виде механической, тепловой и химической энергии может вызывать такие процессы как износ, тепловую деформацию, коррозию, изменяющие начальное состояние направляющих,  [c.55]

Чтобы более точно установить, на какой стадии появления или развития трещины действует коррозионная среда, были проведены исследования поверхности испытанных образцов (при долговечностях, близких к появлению трещины) под электронным микроскопом [ 142,155]. Определено, что коррозионная среда резко ускоряет процесс подрастания трещины. В то же время место начала появления усталостной трещины и на воздухе, и в коррозионной среде одно и то же —вдоль полос скольжения через ач])азу или через двойники. На первой стадии микроскопические трещины распространяются главным образом по линиям сдвигов.  [c.160]

Влияние двухосного напряженного состояния материала на СРТ и долговечность резко снижается при возрастании асимметрии цикла. При максимальной асимметрии цикла 0,8 влияние двухосного нагружения проявляется достаточно слабо. Этот факт может быть объяснен доминированием механизма разрушения путем скольжения при одноосном нагружении с асимметрией R = 0,8n более (см. раздел 6.1). При небольшой амплитуде переменного цикла роль второй компоненты нагрузки не проявляется в кинетике трещин из-за того, что размер зоны пластической деформации сам по себе мал. Изменить размер зоны можно за счет мощного источника энергии, который вызывает существенное пластическое деформирование материала. В условиях высокой асимметрии цикла вторая компонента нагрузки не может оказаться таким источником энергии. Величина ее амплитуды определяется асимметрией i = 0,8 и поэтому очень  [c.327]

Противоположный критерий следует рассматривать при переходе к > 1,0 за счет возрастания второй компоненты нагружения при сохранении уровня первого главного напряжения. В этом случае усиливаются процессы скольжения при зарождении трещины, на что указывает резкое снижение долговечности, и одновременно при всех уровнях асимметрии цикла происходит зарождение трещины менее чем за 10 % от всей долговечности. Остальная часть приходится на процесс распространения трещины. В этом случае резкое возрастание величины второго главного напряжения по сравнению с компонентой Oi приводит к возрастанию уровня энергии, который связан с формированием зоны пластической деформации перед вершиной трещины. Это вызывает увеличение зоны пластической деформации и приводит к резкому снижению периода зарождения и роста трещины.  [c.328]

Следует иметь в виду, что явления, вызывающие эти потери, имеют и другие отрицательные последствия. Так, внутреннее тре-нне влечет за собой усталостное разрушение ремня. Совместно со скольжением оно ведет к нагреванию ремня, которое также отражается на его долговечности. Скольжение, кроме того, вызывает износ рабочей поверхности ремня и его растрепывание.  [c.116]

Материалы фрикционных катков должны иметь высокий коэффициент трения для уменьшения требуемой силы нажатия высокий модуль упругости для уменьшения упругого скольжения и потерь па перекатывание высокую контактjyro прочность и износостойкость для обеспечения необходимой долговечности передачи.  [c.83]

Известное приближение к принципу безызносной работы представляют подшипники скольжения с гидродинамической смазкой. При непрерывной подаче масла и наличии клиновидности масляного зазора, обусловливающей нагнетание масла в нагруженную область, в таких подшипниках на устойчивых режимах работы металлические поверхности полностью разделяются масляной пленкой, что обеспечивает теоретически безызносную работу узла. Их долговечность не зависит (как у подшипников качения) ни от нагрузки, ни от скорости вращения (числа циклов нагружения). Уязвимым местом подшипников скольжения является нарушение жидкостной смазки на нестационарных режимах, особенно в периоды пуска и установки, когда из- за снижения скорости вращения нагнетание масла прекращается и между цапфой и подшипником возникает металлический контакт.  [c.32]

Условие трения без скольжения по длине зуба, соблюдаемое в обычных конических передачах, в цилиндроконичеекпх передачах не выдерживается. Во многих случаях это не имеет существенного значения. В любом эвольвентном зацеплении чистое трение качения наблюдается лишь на участках зуба, близких к начальной окружности у основания и у вершины зуба к трению качения присоединяется трение скольжения. В передачах со скрещивающимися осями также происходит скольжение по длшю зуба, что не умещает этим передачам работать надежно и долговечно.  [c.39]

Недостатки ременных передач I) значительные габариты — обычно в несколько раз большие, чем у зубчатых 2) ней )-бежность некоторого упругого скольжения ремня Л) повышенные силы на валы и опоры, так как для передачи сил тре-пия иужн1.1 1начительные силы прижатия и их приходится назначать но максимальной нагрузке 4) необходимость, ia редкими исключениями, устройств для натяжения ремня 5) необходимость предохранения ремня от попадания масла G) малая долговечность ремней в быстроходных передачах.  [c.278]


Гидродинамическая теория смазки описывает идеализированные модели под-П1ИПНИК0В скольжения. Теория износа еще не позволяет оценивать долговечность деталей с необходимой точностью с учетом реальных условий эксплуатации.  [c.473]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений являются подшипники скольжения, работающие со смазочным материалом. Для обеспечения наибольшей долговечности необходимо, чтобы при работе в установившемся режиме износ подшипников был минимальным. Это достигается при жидкостной сма.зке, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазочного материала. Наибольшее распространение имеют гидродинамические подшипники, в которых смазочный материал увлекается враш,ающейся цапфой в постепенно сужаю-ш,ийся (клиновой) зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша. При этом вал отделяется от поверхности вкладыша и смещается по направлению вращения. Когда вал находится (штриховая линия на рис. 9.5) в состоянии покоя, зазор S = D — d. При определенной частоте вращения вала (остальные факторы постоянны) создается равновесие гидродинамического давления и сил, действующих на опору. Положе1ше вала в состоянии равновесия определяется абсолютным е и относительным "/ = 2e/S эксцентриситетами. Поверхности цапфы и вкладыша подшипника при этом разделены переменным зазором, равным /i ,m в месте их наибольшего сближения и Апих = S —/гп,т на диаметрально противоположной стороне. Наименьшая толщина масляного слоя /г и, связана с относительным эксцентриситетом % зависи.мостью  [c.212]

Посадочные поверхности валов и цапф шлифуют для уменьшения шероховатости. Материал осей и валов назначают с учетом условий их работы, чаще всего используют конструкционные стали марок 20, 30, 40, 45, 50, а также стали Ст5, Стб. При повышенных требованиях к несущей способности и долговечности цапф валы изготовляют из сталей с улучшением марок 35, 40, 40Х, 40ХН. Для увеличения износостойкости цапф в подшипниках скольжения применяют стали 20, 20Х, 12ХНЗА с последующей цементацией цапф.  [c.311]

Состояние фильтрующих элементов п качество фильтрации рабочей жидкости в огромной степени определяет надежную, долговечную и бесперебойную работу гидрооборудования. Механические частицы, попадающие в рабочую жидкость, способствуют разрыву масляной пленки, окислению масла и по-выщенному абразивному износу деталей, а также могут вызвать заклинивание пар трения скольжения, закупорку дроссельных отверстий н щелей. Загрязняющие примеси, образующиеся в самой гидросистеме, в основном состоят из продуктов окисления масла и износа деталей гидравлических агрегатов.  [c.132]

В условиях жидкостного трения сопротивление движению определяется внутренним трением (вязкостью) жидкости и складывается из сопротивления скольжению слоев масла по толп ине смазочного слоя. Такой режим трения со свойственным ему малым коэффициентом трения следует считать оптимальным для узла трения с точки зрения затрат энергии на трение, долговечности и износостойкости трибо-системы.  [c.75]

При работе двигателя в его деталях на сопряженных поверхностях возникает трение. Величина силы трения, возникающей при скольжении, зависит от материалов, из которых изготовлены трущиеся детали, ка-честаа их обработки и условий трения. Трение называется сухим, если между трущимися поверхностями отсутствует смазка. Если поверхности отделены друг от друга слоем смазки, то возникающее при этом трение называется жидкостным. При жидкостном трении повышается долговечность трущихся деталей и обеспечивается отвод от них тепла. Наряду с трением перечисленных видов в реальных условиях работы двигателей часто наблюдается полужидкостное или полусухое трение, из которых первое приближается к жидкостному, а второе — к сухому трению.  [c.422]

Дриц М. Е., Повышение срока службы подшипников скольжения. Повышение долговечности машин, Машгиз, 1956.  [c.118]

Натяжение ремня — необходимое условие работы ременных передач. Оно осуществляется 1) вследствие упругости ремня - укорочением его при сшивке, передвижением одного вала (рис. 251, а) или с помощью нажимного ролика 2) под действием силы тяжести качающейся системы или силы пружины 3) автоматически, в результате реактивного момента, возникающего на статоре двигателя (рис. 251,6). Так как. на практике большинство передач работает с переменным режимом нагрузки, то ремни с постоянным предварительным натяжением в период недогрузок оказываются излишне натянутыми, что ведет к резкому снижению долговечнорти. С этих позиций целесообразнее применять третий способ, при котором натяжение меняется в зависимости от нагрузки и срок службы ремня наибольший. Однако автоматическое натяжение в реверсивных передачах с непараллельными осями валов применить нельзя. Для оценки ременной передачи сравним ее с зубчатой передачей как наиболее распространенной. При этом можно отметить следующие основные преимущества ременной передачи 1) плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях 2) предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня 3) предохранение механизмов от перегрузки за счет возможного проскальзывания ремня 4) возможность передачи движения на значительное расстояние (более 15 м) при малых диаметрах шкивов 5) простота конструкции и эксплуатации. Основными недостатками ременной передачи являются 1) повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня 2) некоторое непостоянство передаточного отношения из-за наличия упругого скольжения 3) низкая долговечность ремня (в пределах от 1000 до 5000 ч) 4) невозможность выполнения малогабаритных передач. Ременные передачи применяют  [c.278]

Такое предположение позволяет сделать сопоставление данных работ [61] и [96]. В обеих работах исследовали один и тот же Ti-сплав с параметрами структуры, характеризуемыми крупными а -пла-стинами в первичных (3]5,-зернах размером 0,5-1 мм. В работе [43] при выдержке материала под нагрузкой в течение нескольких минут изменения СРТ по сравнению с х = О не отмечали. В работе [96] при выдержке произошла смена механизма разрушения с вязкого внутризеренного, которому отвечал бороздчатый рельеф излома, на межсубзеренный с фасеточным рельефом излома, что сопровождалось сокращением в 16 раз периода роста трещины. В связи с фактом возрастания скорости роста трещин было подчеркнуто [96] наличие в материале 0,004 % Н2. Это количество Н2 достаточно мало по массе, но в другой работе [81] при длительном статическом нагружении образцов из сплава 0Т4 по схеме Трояно при объемной доле Н2 в 0,003-0,005 % наблюдали их замедленное разрушение и увеличение СРТ при высоком уровне напряжений. Такое разрушение, как говорилось выше, сопровождалось образованием гидридов и развитием трещин по ним. Но в работе [61] снижение долговечности было объяснено диффузией имеющегося в материале Н2 в полосы скольжения. Если это так, то при выдержке данный процесс должен сопровождать и рост трещины, способствуя охрупчиванию материала, однако это в работе [60] не наблюдалось. Поэтому только наличием в сплаве Н2 нельзя объяснить снижение периода зарождения трещины и увеличение СРТ. По всей вероятности, имелась некоторая субструктурная особенность состояния материала по межфазпым границам, которая вызывала рост трещины по ним в течение выдержки под нагрузкой или охрупчивание по плоскостям скольжения в монофазном материале.  [c.368]



Смотреть страницы где упоминается термин Долговечность скольжения : [c.273]    [c.17]    [c.77]    [c.309]    [c.423]    [c.59]    [c.119]    [c.92]    [c.246]    [c.8]    [c.399]    [c.271]   
Основы конструирования Книга2 Изд3 (1988) -- [ c.323 ]



ПОИСК



708 — Модули — Связь с питчами — Таблицы 27 — Натяжение 712 — Размеры рекомендуемые 707 — Усилия окружные удельные и коэффициенты стандартные 716 — Долговечность 717, 718 — Мощности передаваемые 723 Натяжение предварительное 720 — Сечения — Выбор 718 — Сечения — Размеры 715 — Скольжени

Втулки неметаллических подшипников скольжения - полимерные 66 - Рекомендуемая долговечность

Долговечность



© 2025 Mash-xxl.info Реклама на сайте