Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновой иск горизонтальный

Мотор-редукторы волновые горизонтальные типа МВз  [c.44]

Волновой горизонтальный одноступенчатый Вз-80 Вз-160 80 160 0,08—0,26 0,77—2,4 0,09—0,14 0,71—1,25 80 100 125 160 200 250 Киевский редукторный завод  [c.191]

Пример синтеза рациональной формы подпорной или причальной стенки [9]. Причальные и подпорные стенки предназначены для поддержания крупных и вертикальных откосов берегов, насыпей, выемок, естественных склонов, а также защиты откосов от волнового воздействия (рис. 1,20). Они часто используются гри транспортном и энергетическом гидротехническом строительстве, прокладке автомобильных и железных дорог и т. д. Причальные и подпорные стенки различаются как по назначению, так и по материалу, условиям работы, грунтам в основании и боковой поверхности, что обусловливает большое разнообразие их форм. Подпорная стенка является частным случаем причальной стенки, поэтому расчетная схема составлена для последней. Причальная стенка представляет собой бетонное сооружение высотой Н от 4 до 20 м (рис. 1.20). На нее воздействуют горизонтальные и вертикальные силы Я и О от собственной массы стенки, массы засыпки, швартовое усилие, волновое усилие, равномерно распределенная полезная нагрузка интенсивности и т. д. L — уровень воды).  [c.48]


Из огромного разнообразия задач, актуальных для волновых течений жидкости [35], в книге рассматриваются в первую очередь две классические проблемы устойчивости горизонтальной границы раз-  [c.6]

В простейшем случае волнового движения горизонтальной поверхности раздела фаз (свободной поверхности жидкости неограниченной протяженности) механизм возникновения волн можно представить следующим образом. Любое возмущающее воздействие, вызвавшее искривление поверхности раздела, обусловливает возникновение сил, стремящихся вернуть поверхность к исходному состоянию. Во первых, это — силы поверхностного натяжения, пре-  [c.125]

Авторы [71] объединили снарядный и эмульсионный режимы в перемежающийся режим течения, что достаточно обосновано с точки зрения приложений. В горизонтальных каналах особенно в условиях теплообмена чрезвычайно важно определить границу расслоенного режима течения, так как в этом режиме верхняя часть поверхности трубы не имеет контакта с жидкостью. В [71] принято, что волновой режим переходит в дисперсно-кольцевой или перемежающийся, когда амплитуда волн становится соизмеримой с диаметром канала и жидкость смачивает верхнюю образующую цилин-  [c.307]

К первому типу относится волновое расслоенное течение в горизонтальных трубах и дисперсно-кольцевые течения при любой ориентации канала. Ко второму типу можно отнести пузырьковый, снарядный и эмульсионный режимы течения. В 7.4 и 7.5 рассмотрены структуры второго типа.  [c.310]

Компонента К в этой реакции участвовать не может. Следовательно, при прохождении через слой 2 в пучке уменьшается процент компоненты К и тем самым опять появляется короткоживущая компонента К . Такая регенерация частиц за счет только процессов поглощения является типично волновым свойством. Тут есть простая аналогия с оптикой пусть идет луч света, поляризованный в вертикальной плоскости (К ). Пропустим этот свет через николь, ориентированный под углом 45° к вертикали (распад Ks-компоненты). Луч станет поляризованным в плоскости под углом 135° к вертикали (К1)- В этом луче поляризация имеет как вертикальную (К ), так и горизонтальную (К") составляющие и т. д.  [c.412]

При конденсации на горизонтальной трубе диаметром (1 волновое и Турбулентное движение в пленке конденсата на практике не возникает ввиду малой протяженности поверхности по высоте и  [c.59]

В связи с этим при непрерывном потенциальном возмущенном движении идеальной тяжелой жидкости, возникающем в случае горизонтального поступательного движения с постоянной скоростью твердого тела (корабля) по ее свободной поверхности или внутри нее вб.лизи свободной поверхности (подводной лодки), парадокс Даламбера не имеет места. В этих случаях возникают волновое сопротивление и подъемная сила, а количество движения жидкости при установившемся течении представляется расходящимся интегралом.  [c.208]


При пленочном кипении жидкости на поверхности горизонтальной плиты значительных размеров поверхность паровой пленки испытывает интенсивные волновые колебания, в результате которых в различных ее точках периодически образуются всплывающие вверх паровые пузыри. На рис. 4-20 приведено сопоставление формулы (4-14) с опытными данными при пленочном кипении  [c.125]

На горизонтальных трубах волновой режим течения обычно не наблюдается, что объясняется малой протяженностью пленки конденсата.  [c.135]

Один И8 концов однородной гибкой цепи длиной I прикреплен к вертикальному стержню, вращающемуся с постоянной угловой скоростью О. Если пренебречь влиянием силы тяжести, то можно считать, что цепь описывает круг в горизонтальной плоскости. Используя вариационный принцип Гамильтона, получить волновое уравнение для малых поперечных колебаний найти частоту основной (фундаментальной) моды колебаний.  [c.219]

При помощи формул (5.16), (5.19) можно найти горизонтальные скорости и расходы в любом сечении нити, подверженной волновому движению любого вида. Найдем, например, скорость сечений поперечной волны пе-растяжимой нити (модель садовая гусеница ). Согласно  [c.84]

Горизонтальный шаг Аа точек гибкой нити, совершающей волновое движение, равен разности длины I нити, образующей контур волны, и ее проекции I на опору,, т. в. Ах = I — I. Из рис. 6.3 следует, что для рассматри-  [c.97]

Волновые механизмы, работающие на основе использования поперечной бегущей волны на гибкой связи, сцепленной с опорой, могут выполнять те же функции, что и механизмы, использующие продольную волну. Различия здесь будут заключаться лишь в характере кинематических и динамических зависимостей, величинах параметров, силовых характеристиках, величинах к. п. д., в возможностях технической реализации. Если представить себе поперечную и продольную бегущие волны, у которых эпюры продольных деформаций е или линейной плотности рд. (см. рис. 5.7) одинаковы, и проанализировать горизонтальные движения их точек, то можно прийти к выводу, что эти волны вызовут одинаковые горизонтальные перемещения деформируемых тел, т. е. функции этих волн как движителей совпадут.  [c.146]

Выделяют несколько режимов течения двухфазного потока пузырьковый, снарядный, эмульсионный, дисперсно-кольцевой, дисперсный, а в горизонтальных трубах — еще и поршневой, волновой и расслоенный режимы. Все же главными, основными следует считать пузырьковый, дисперсно-кольцевой и дисперсный режим. Узкий интервал между пузырьковым и дисперсно-кольцевым режимами течения занимают снарядный (пробковый) и эмульсионный режимы. Эта область по сути дела является переходной.  [c.159]

Для горизонтальных и слегка наклонных труб в зависимости от объемных расходов жидкости и пара характер движения может быть а) расслоенным, когда жидкая фаза движется в нижней, а паровая в верхней части трубы б) волнообразным, когда граница раздела фаз приобретает волновое движение и волны периодически захлестывают верхнюю образующую трубы и в) эмульсионным, когда структура потока подобна пене или однородной эмульсии [Л. 17]. При расслоении фаз интенсивность теплоотдачи в верхней части трубы резко уменьшается. При больших скоростях жидкости и пара и больших паросодержаниях вокруг всей поверх-  [c.102]

Например, при конденсации водяного пара (Гн=373 К) иа горизонтальной трубе согласно последнему выражению волновое течение будет иметь место, если >50 imm.  [c.59]

Теоретическое описание акустических и гравитационных мод. Поскольку периоды р- и -мод намного меньше периода вращения Солнца, то в первом приближении пренебрегают влиянием вращения и колебания рассматриваются как малые периодич. возмущения равновесного состояния Солнца. В сферич. системе координат (г, 6, <р) распределение амплитуды стоячих волн по поверхности постоянного радиуса описывается сферич, гармониками (0, ф) (см. Сферические функции), где I — степень сферич. гармоники — целое число, равное полному кол-ву узловых линий на поверхности и задающее горизонтальную компоненту волнового вектора кд = 1(1 - - 1)/г т — азимутальный порядок —  [c.581]


При обтекании волновой поверхности пленки распределение давлений в газовой фазе будет периодическим на гребне каждой волны давление снижается, а во впадине возрастает. При этом внутренние нормальные силы давления способствуют развитию волнового движения на поверхности пленки, так как увеличивают амплитуду волн. К числу сил, препятствующих развитию волнового движения, относятся силы поверхностного натяжения в пленке, а также гравитационные силы (в горизонтальном потоке). Нормальные силы давления зависят от формы волновой поверхности. Для плоских волн они будут минимальными, а для трехмерных — максимальными промежуточное положение занимают шквальные волны.  [c.335]

Скорость волны с не является скоростью частиц жидкости, которые при волновом движении на поверхности канала конечной глубины движутся по эллиптическим траекториям, а в жидкости бесконечной глубины — по круговым. При стоячей волне частицы жидкости описывают отрезки прямых линий, наклоненных к горизонтальной плоскости под разными углами.  [c.86]

Так, например, при пузырьковом и снарядном режимах течения газосодержание в верхней части горизонтально трубы больше, чем в нижней (рис. 2а, б). Кролш того, переход от снарядного течения к пленочному в горизонтальных трубах осуществляется несколько иначе, чем в вертикальных. Пусть при определенной скорости ввода газовой фазы в горизонтальную трубу там установился снарядный режи.м течения. Будем увеличивать газосодержание потока. Благодаря действию силы тяжести более тяжелая фаза (жидкость) будет стремиться в нижнюю часть трубы, а более легкая (газ) — в верхнюю. Таким образом, возникнут параллельные потоки жидкой и газообразной фаз. Такой режим течения носит название расслоенного. При этом на поверхности жидкости могут возникать поверхностные волны (см. рис. 2, в), вызванные движением газовой фазы. При дальнейшем увеличении скорости подачи газа поверхностные волны могут достигать верхней стенки аппарата. Эти волны распространяются с большой скоростью и смачивают всю поверхность верхней части трубы, на которой остается пленка жидкости. Пленка покрывает поверхность трубы в промежутках между перемычками (рис. 2, г), образованными жидкостью. Режим течения, при котором образуются эти перемычки, носит название волнового режима с перемычками. Если происходит дальнейшее увеличение скорости газа, то газовый поток пробивает жидкие перемычки  [c.6]

Классификация редукторов проводится по следующим основнылт признакам тип передачи (зубчатые, червячные, комбинированные, планетарные, волновые и планетарноволновые), число ступеней (одноступенчатые, двухступенчатые и т. д.), тип зубчатых колес (цилиндрические, конические, волновые), относительное расположение валов в пространстве (горизонтальное, вертикальное и т. д.). Специальным типом весьма компактной приводной установки является так называемый мотор-редуктор (см. рис. 3.99).  [c.490]

При Re,,,, = 5 -7 движение пленки ла.минарное, прн Re,,., > > 400 — турбулентное, а при промежуточных значениях—волновое. П. Л. Канина установил влияние сил поверхностного натяжения на ламинарное течение иленки, п))и котором случайные воз.мущения пр водили к волновому ее движению, Средняя толщина пленки оказалась меньше, что привело к увеличению коэффициента а на 21 % по сравнению с рассчитанным по формуле Нуссельта. Для вертикальных труб при лами 1арно-волновом течении а определяют по формуле (17.54), но при С 1,15. На горизонтальных трубах волновое и турбулент1юе течения пленки не образуются из-за . алой дл1 ИЬ пути, и расчет ведут по формуле (17.54).  [c.212]

При движении двухфазного потока внутри труб, расположенных горизонтально или с небольшим наклоном, кроме изменения структуры потока по длине, имеет место значительное изменение структуры по периметру трубы. Так, если скорость циркуляции и содержание пара в потоке невелики, наблюдается расслоение двухфазного потока на жидкую фазу, двужущуюся в нижней части трубы, и паровую, движущуюся в верхней части ее (рис. 13-13,а). При дальнейшем увеличении паросодержания и скорости циркуляции поверхность раздела между паровой и жидкой фазами приобретает волновой характер и жидкость гребнями волн периодически смачивает верхнюю часть трубы. С дальнейшим увеличением содержания пара и скорости волновое движение на границе раздела фаз усиливается, что приводит к частичному выбрасыванию жидкости в паровую область. В результате двухфазный поток приобре-  [c.312]

В широкой полосе частот дисперсионные кривые, построенные по уравнению (1) для случая п = ЫН = h lH = 1/20, приведены на рис. 2—4. Предполагается, что стенка и полки стержня изготовлены из одного материала. В левой половине графиков изображены мнимые ветви дисперсии, в правой — действительные ветви. По горизонтальным осям отложены лшимые и действительные значения безразмерной постоянной распространения Я = кН, по оси ординат — величина jXj == kiH, пропорциональная частоте k — волновое число сдвиговых волн материала). Рис. 2—4 соответствуют трем различным значениям относительной ширины полки т = 2 H jH.  [c.30]

Согласно наблюдениям волновое течение развивается на протяжении участка в несколько длин волн. Следовательно, волновое движение жидкой пленки, стекающей по стейке горизонтальной трубы, может возникнуть лишь (В том случае, если диаметр трубы достаточно велик, так KaiK лишь в этом случае будет иметься достаточная протяженность поверхности пленки для развития волнового течения. Для длины волны Яв в момент возникновения волнового течения П. Л. Капицей предложено соотношение  [c.59]


Твердотельные В, а. обычно ограничены свободнымя границами (стержни, пластины). Нормальные волны g таких В. а. образованы как сдвиговыми волнами горизонтальной (параллельной границе раздела) поляризации, так и совместно распространяющимися продольными и сдвиговыми волнами вертик. поляризации, преобразующимися друг в друга при отражениях на границах. Набор таких нормальных волн богаче, чем в жидких В. а. В частности, в ннх возможны нормальные волны с колтлексными волновыми числами, В У 3-технологии твердотельными В. а. наз. также всякие устройства (стержни, концентраторы) для передачи колебат. энергии на пек-рое расстояние от источника или для введения колебат. энергии в к.-л. среду.  [c.306]

ВОЛНЫ ИОНИЗАЦИИ — см. Ионизационные еолны. ВОЛНЫ НА ПОВЕРХНОСТИ ЖИДКОСТИ — волновые движения жидкости, существование к-рых связано с изменением формы её границы. Наиб, важный пример — волны на свободной поверхности водоёма (океана, моря, озера и др.), формирующиеся благодаря действию сил тяжести и поверхностного натяжения. Если к.-л. внеш. воздействие (брошенный камень, движение судна, порыв ветра и т. п.) нарушает равновесие жидкости, то указанные силы, стремясь восстановить равновесие, создают движения, передаваемые от одних частиц жидкости к другим, порождая волны. При этом волновые движения охватывают, строго говоря, всю толщу воды, но если глубина водоёма велика по сравнению с длиной волны, то эти движения сосредоточены гл. обр. в приповерхностном слое, практически не достигая дна (короткие волны, или волны на глубокой воде). Простейший вид таких волн — плоская синусоидальная волна, в к-рой поверхность жидкости синусоидально гофрирована в одном направлении, а все возмущения физ. величин, напр, вертик. смещения частиц (z, X, t), имеют вид 1=А z) os (i>t—kz), где х — горизонтальная, Z — вертикальная координаты, ы — угл. частота, к — волновое число, Л — амплитуда колебаний частиц, зависящая от глубины г. Решение ур-ний гидродинамики несжимаемой жидкости вместе с граничными условиями (ноет, давление на поверхности и  [c.332]

Влияние рельефа земной поверхности на Р. р. зависит от высоты неровностей к, их горизонтальной протяжённости /, Я н угла 0 падения волны на поверхность. Если неровности достаточно малы и пологи, так что ЛЛсозб < < 1 (Л — волновое число), н выполняется т, в. критерий Рэлея Л2) со50 < 1, то они слабо влияют на Р, р. Влияние неровностей зависит также от поляризации воля. Наир., для горизонтально поляризованных волн оно меньше, чем дляг волн, поляризованных вертикально. Когда неровности не малы и не пологи, анергия радиоволны может рассеиваться (радиоволна отражается от них). Высокие горы и холмы с к %  [c.257]

Рнс. 2. Фоготермоионизационные спектры примесей в высокочистых образцах германия (а) и кремния (о), зарегистрированные бесконтактным методом. Метки на горизонтальных отрезках указывают спектральные линии данной примеси. Метки, направленные вверх, соответст вуют основным примесям, вниз — компенсирующим, V — волновое число.  [c.362]

В измерительной схеме применение эталонного датчика обеспечивает компенсацию изменения химического состава и температуры исследуемой жидкостной пленки. Для измерения волновых параметров пленки в опытах применялись датчики со стержневыми электродами. Диаметр электродов и расстояние между ними были выбраны в процессе предварительных экспериментов таким образом, чтобы обеспечить по возможности в большей области ожидаемых толщин пленки зависимость, близкую к линейной, выходного сигнала прибора от толщины пленки. В экспериментах были использованы электроды, изготовленные из нержавеющей стали, диаметром 0,9 мм, расстояние между их центрами 4 мм. Датчики были установлены на расстоянии 350, 650 и 925, 950 мм от входной щели. Опыты показали, что стабилизация волновых параметров пленки наступает при L 800 мм для Reg = 800, а стабилизация профиля скорости воздушного потока — при L = 700мм для Re = 12 000. Таким образом, на участке канала с L > 800 мм в любом из рабочих режимов происходит установившееся однонаправленное горизонтальное воздуховодяное расслоенное течение. Измерения волновых параметров проводились с помощью датчиков, установленных на расстоянии 925 и 950 мм. Согласно рис. 2.29, а сигнал от датчика электропроводности поступает к ИТП-1, измеряющему толщины пленок. К выходу этого прибора под ключается шлейфовый осциллограф, регистрирующий локальные мгновенные толщины пленок жидкости. Использовались различные типы проволочных датчиков, показанных на рис. 2.29, б.  [c.80]

В работе, выполненной в ИВТАН [3.15], производились визуальное наблюдение и киносъемка процессов волнообразования на обогреваемых горизонтальных пластинах длиной L = 250 и 450 мм в прямоугольном канале в спутном потоке пара. Тепловые потоки ст изменялись от О до критической величины кр - 1,3-10 Вт/см . На рис. 3.4, а даны кинокадры волновой структуры при кипении пленки, соответствующие постоянной скорости спутного потока пара (ш = 37 м/с, Re = 4,7-10 и Не2 = 130) кинокадры на рис. 3.4, б соответствуют данным для большей скорости парового потока (Rei = 6,2-10 ) и большего числа Рейнольдса для пленки (Вег = 449), а кинокадры на рис. 3.4, в соответствуют той же скорости спутного потока, что и на рис. 3.4, б, но для большего расхода  [c.101]

Если участок горизонтальной поверхности жидкости подвергается малому отклонению от равновесия, то под действием восстанавливающих сил (массовых и поверхностного натяжения) этот участок приходит в движение, проходит состояние равновесия, снова попадает под действие восстанавливающих сил, таким образом, возникает волновое движение жидкости. Большинство задач гидродинамики, связанных с образованием волн на поверхности жидкости, рассматривается в предположении, что жидкость идеальная несжимаемая, а движение ее потенциальное. Для таких волновых движений справедливо уравнение Лапласа (1.72), а поле давлений описывается интегралом Лагранжа — Кощи (1.39). Если плоскость хОу совпадает с горизонтальной поверхностью жидкости, а ось z направлена вертикально вверх, то волновая поверхность может быть представлена уравнением  [c.85]

Горизонтальные и наклонные каналы. В горизонтальных и наклонных (под малым углом к горизонту) каналах различают расслоенный, волновой, пузырьковый, снарядный, эмульсионный и дисперсно-кольцевой режимы течения. Структура потока при этих режимах ясна из рис. 1.87. Специфика течения в горизонтальных каналах состоит в том, что здесь всегда наблюдается значительная несимметричность в распределении фаз по сечению канала. В дисперсно-кольцевом режиме течения даже при очень высоких скоростях смеси толщина жидкой пленки внизу трубы оказывается почти на порядок больше, чем в ее верхней части. Эмульсионный режим течения в горизонтальных каналах сохраняет известные черты волнового движения, когда амплитуда гюследнего превышает диаметр канала. При этом жидкие перемычки (гребни волн) насыщены газовыми пузырьками, а газовые снаряды (впадины волн) содержат множе-  [c.96]


Смотреть страницы где упоминается термин Волновой иск горизонтальный : [c.179]    [c.302]    [c.303]    [c.204]    [c.262]    [c.148]    [c.135]    [c.145]    [c.140]    [c.17]    [c.270]    [c.425]    [c.426]    [c.581]    [c.130]   
Акустика слоистых сред (1989) -- [ c.15 , c.28 , c.127 , c.249 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте