Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Робот степень подвижности

В зависимости от характера Рис. УП1-5. Манипуляционное устрой- выполняемых операций число ство робота степеней подвижности руки со-  [c.316]

Промышленный робот (ПР) рассматривается как универсальный автомат с большим числом (от 3 до 10) степеней подвижности, управляемый средствами программного управления.  [c.225]

Поэтому интеллектуальный робот для сборки гальванических матриц должен, во-первых, выбрать все движения от ящика до матрицы, а во-вторых, из всех возможных движений выбрать те, которые обеспечивают минимальную стоимость. Приставки из экстремального регулятора и микропроцессора оценки состояния позволяют обычный робот довести до интеллектуального. Задача состоит в том, чтобы робот но своим степеням подвижности и допустимой рабочей зоне обеспечивал реализацию программ.  [c.83]


На одно из первых мест сейчас выходят новые виды и системы машин, способные выполнять широкий спектр задач, ранее решавшихся только самим человеком. Это промышленные роботы, манипуляторы, автооператоры и другие. В сельском хозяйстве такие системы, обладающие большим числом степеней подвижности, с автоном-йым или централизованным управлением должны в первую очередь заменять людей на тяжелых погрузочно-разгрузочных работах, на сортировке, штабелировании, укладке и обработке отдельных продуктов, а в дальнейшем и на более сложных специфических операциях.  [c.156]

Анализ организационной формы и структуры времени операций технологического оборудования необходим при предварительной разработке структуры РТК, т. е. при определении, будет ли разрабатываться гибкий производственный модуль (ГПМ) (РТК является частным случаем ГПМ) или гибкая автоматизированная линия (ГАЛ) или участок (ГАУ) с использованием ПР. При этом определяются также характер и средства межоперационного перемещения предмета труда, обеспеченность РТК средствами контроля, инструментами и приспособлениями. Анализ структуры норм времени позволяет определить количественный состав оборудования, обслуживаемый одним роботом, и проверить требования по быстродействию, сост)аву степеней подвижности и типу устройства управления ПР.  [c.510]

Дуговую сварку в защитных газах применяют в робототехнических комплексах для сварки изделий в мелко- и среднесерийном производствах. Комплекс (рис. 5.11) включает в себя манипулятор 4 с рабочим органом - сварочной горелкой 3, поворотный стол 2, на котором устанавливаются и точно позиционируются свариваемые изделия 7, и устройства программного управления 5. Манипулятор имеет пять-шесть степеней подвижности, что позволяет ему перемещать сварочную горелку по сложной пространственной траектории. Траектория движения горелки программируется и может быстро изменяться при смене свариваемого изделия. Роботы первого поколения имеют жестко заданную программу перемещения рабочего органа, что требует проводить позиционирование свариваемого изделия с высокой точностью. Роботы второго поколения (адаптивные, самонастраивающиеся) имеют специальные датчики, позволяющие им реагировать на отклонение траектории сварного шва и корректировать движения горелки.  [c.238]

Манипулятор изделия как бы дополняет степени подвижности робота, работает с ним по единой программе и управляется от той же системы. Большое многообразие конструктивных форм сварных изделий вызывает потребность сложного манипулирования ими при сварке, что часто не может быть обеспечено с помощью стандартных сварочных вращателей. Поэтому при конструировании РТК используют модульный принцип построения манипуляторов. Простейшие  [c.331]


Основными параметрами промышленных роботов, определяющими их выбор, являются подвижность корпуса, грузоподъемность, количество степеней подвижности, точность позиционирования, быстродействие.  [c.153]

Промышленный робот — это автоматическая машина, стационарная или передвижная, состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и программного устройства управления для выполнения в производственном процессе двигательных и управляющих функций. Программированию в данном случае подвергается последовательность и (или) величины перемещений по степеням подвижности, и управляющие функции.  [c.117]

В зависимости от числа подвижных звеньев различают роботы с двумя, тремя, четырьмя, пятью и шестью степенями подвижности. По типу системы управления различают роботы с цикловыми и числовыми системами управления. Числовые системы управления, в свою очередь, могут быть позиционными и контурными. Числовые системы управления функционально более гибкие, чем цикловые. Наиболее гибкие и универсальные системы — числовые контурные системы управления.  [c.119]

По степени универсальности назначения различают универсальные и специализированные сварочные роботы. Универсальные сварочные роботы с функционально и конструктивно неделимыми манипуляторами, имеюши-ми пять-шесть степеней подвижности, оснащенные функционально гибкими системами управления, чаще всего применяются для серийного и мелкосерийного производства, а также крупносерийного многономенклатурного производства с частой сменой свариваемых изделий, т. е. когда универсальность и гибкость робота не избыточны, а действительно необходимы.  [c.119]

Специализированные роботы, особенно модульные с более простыми системами управления, наиболее пригодны для крупносерийного и массового производства с редким (один—четыре раза в год) изменением типоразмеров свариваемых изделий. Применение модульных роботов с двумя—четырьмя степенями подвижности целесообразно при сварке изделий со швами простой формы, прежде всего с прямолинейными и круговыми швами, особенно в тех случаях, когда эти швы могут быть ориентированы вдоль направляющих. Во многих случаях для специализированных роботов достаточно иметь простую, например цикловую, систему управления и несложные средства геометрической адаптации 6]. Применение контурных систем управления в модульных роботах делает их более гибкими с минимальной функциональной избыточностью  [c.119]

Число степеней подвижности робота 5  [c.142]

Автоматическую линию обслуживают три пневматических робота грузоподъемностью 0,5 кг с числом степеней подвижности 3 и погрешностью позиционирования 0,15 мм. Производительность линии - 300 трансформаторов в час. Цикл сборки одного трансформатора (без учета времени на сушку) составляет 15 с. Управление линией осуществляется от устройства 8.  [c.782]

Исполнительные органы (блок 2) робота — его руки . Для механического перемещения звеньев рук робота по всем степеням подвижности создана система приводов (блок 3) с устройствами управления ими (блок 4). Здесь имеется в виду лишь нижняя ступень устройств управления движением приводов как следящих систем о внутренними корректирующими средствами. На схеме показаны стрелками связи между этими тремя блоками (прямые и обратные).  [c.311]

Существенное сокран ение ручного труда при выполненни сборочно-сварочных операций возможно при использовании робототехники. Универсальность роботов с шестью степенями подвижности (рис. 4.11) дает возможность автоматизировать любые операции, выполняемые рукой человека, а быстрота перестройки технологического процесса позволяет обеспечить ту гибкость, которую сегодня имеют только производства, обслуживаемые человеком. Использование робототехники не является самоцелью, оио  [c.62]

Промышленные роботы (ПР), применяемые в сва-ро ою.м производстве, обычно являются упнверсальпыми, пригодными для выполнения сборочны.х, сварочных, а также транспортных операции при изготовлении разнообразных конструк-ЦИ.Й. Их технологические возможности характеризуются следующими параметрами кинематическая схема, 1 рузоподъемность и число степеней подвижности форма и размеры рабочей зоны точность позиционирования характер привода и тип системы управления.  [c.63]


Структуру системы управления движением промышленного робота можно проследить по схеме, приведенной на рис. 18.4, отражающей определенные уровни управления. На первом уровне автоматизированные приводы для всех степеней подвижности обеспечи-ванэт движение исполнительных звеньев и механизмов робота в пределах рабочей зоны с помощью управляющих программ по каждому частному циклу. Информация о положении исполнительных звеньен, характеристиках внешней среды и объекта манипулирования вырабатывается датчиками и по каналам обратной связи передается оператору или в специальные устройства более высоких уровней управления для внесения коррективов в движение, если в этом возникает необходимость. Формирование сигналов управления движением приводов и устройствами автоматики обычно осу-  [c.481]

Приводы промышленных роботов могут быть электромеханическими, гидравлическими, пневматическими и комбинированными. Кроме того, промышленные роботы классифицируют по чисчу степеней подвижности, по виду применяемой системы координат и по способу программирования.  [c.175]

Промышленный робот— автоматическая машина, стационарная или подвижная, состоящая из исполнител1.ного устройства в виде манипулятора, имеющего несколько степеней подвижности, и перепрограммируемого устройства программного управления для выполнения в производственном процессе двигательных и управляющих функций. Перепрограммируемость—свойство промышленного робота заменять управляемую программу автоматически или при помощи человека-оцератора (ГОСТ 25686—85).  [c.6]

Такую структуру имеют механические части подъемно-транспортных машин, а также робо-тов-манипуляторов. На рис. 8 показана схема робота-манипулятора с тремя степенями подвижности, представляющего собой последовательное соединение по принципу выход — стойка трех механизмов.  [c.11]

Составим в качестве примера уравнения движения механической системы робота с тремя степенями подвижности типа Вер-сатран (рис. 29). Рабочими движениями этого робота являются поворот колонны 1, вертикальное перемещение траверсы 2 и выдвижение руки 3, несущей охват 4. На рис. 29 показаны системы координат, связанные со звеньями 1—S, и неподвижная  [c.61]

Более сложной задачей программного управления является перевод некоторой механической системы из одного положения в другое (иными словами, изменение пространственной конфигурации системы). Программное управление, обеспечивающее решение такой задачи, называется позиционным] оно характерно для всевозможных транспортирующих машин, в том числе и для роботов-манипуляторов, основной задачей которых является обычно транспортирование различных механических объектов. В большинстве случаев позиционное управление должно обеспечивать движение транспортируемого объекта по определеппой траектории закон движения имеет обычно второстепенное значение, и требования к нему сводятся к обеспечению выполнения заданного перемещения за заданное время. Тем не менее в системах с несколькими степенями подвижности для получения требуемой траектории необходимо согласование законов изменения во времени независимых обобщенных координат системы. Наиболее сложная задача ставится перед так называемым непрерывным  [c.103]

Концепция модульной контрольной ячейки на основе роботов Bravo была результатом изучения фирмой DEA требований гибкой производственной системы. Эта ячейка имеет как основной стандартный компонент горизонтальные измерительные звенья роботов, которые комбинируются с измерительными звеньями роботов такого же типа для конструирования контрольной ячейки,, вполне соответствуюш,ей производственным требованиям. Эти звенья, выпускаемые с различными стандартными рабочими ходами, характеризуются тремя — четырьмя степенями подвижности — три взаимно перпендикулярных линейных движения и одно вращательное — и содержат ряд приспособлений и принадлежностей, таких, как автоматические электронные щупы, автоматические магазины с инструментом, датчики и приборы для распознавания деталей и т. д. Движение осей звеньев контролируется микропроцессором, который управляет в метрологической и операционной синхронизации двумя звеньями, работаюш ими с одной деталью или независимо с двумя деталями, и, вероятно, можно расширить это управление до четырех звеньев. Микропроцессор производит одновременное управление положением скоростью и ускорением звеньев.  [c.43]

Следует сразу подчеркнуть, что число степеней подвижности определяет сложность кинематических уравнений. С другой стороны, именно избыточность степеней подвижности гарантирует достижение роботом любой точки пространства. Чтобы обеспечить попадание робота в заданную точку пространства, необходимо обеспечить соответствующую угловую ориентацию робота в каждой точке. При этом возникает заданная конфигурация звеньев. Поэтому наряду с вектором состояния робота X ( 1X2,. . ., а п) обязательно существует вектор обобщенных координат G (qiq2,. . ., m) и между ними, естественно, существуют определенные прямое / и обратное преобразования, так что X — / (G) и G = (X). Причем вектор обобщенных координат G является носителем управляемого и программируемого движения.  [c.68]

В АПМП роботы должны быть многофункциональными. Ритм производства разнообразен. Однако в работе робота не должно быть больших интервалов, в противном случае его производительность снизится. В этот период он должен выполнять другие функции. Необходимые свойства робота — адаптивность и инвариантность. Робот должен оптид ально приспосабливаться к окружающей среде, уметь перенастраиваться, менять степень подвижности, обладать избыточностью состояний, что позволит исключить проявление неопределенности. Оценивает внешнюю среду и регулирует действие робота механизм перенастройки.  [c.77]


Робот должен состоять из двух частей механизма со многими степенями подвижности и программной части. Обе должны в полной мере отвечать требованиям АПМП.  [c.77]

Робот I типа включает в себя манипулятор, состоящий из стойки и консольной руки, позиционер (манипулятор изделия) с планшайбой, на которой крепится сварочный кондуктор, блок управления, пульт дистанционного управления, устройство стыковки. Робот имеет пять степеней подвижности перемещение стола по осям X и Y, перемещение руки по оси Z, поворот планшайбы стола по оси а, поворот горелки по оси ф. Он обеспечивает 16 значений линейных скоростей в пределах 3—16 (через 1 мм/с), 20 и 75 мм/с. Угловая скорость по оси ф постоянна и равна 0,487 рад/с (28 град/с). Сервопривод — электродвигатели постоянного тока, система программного управления — контурная. Микропроцессор управления роботом позволяет выполнять разные функции интерполяции (дуговая и прямолинейная) и обеспечить легкость обучения робота. Память системы построена на интегральных схемах, емкость памяти 470 точек, способ регулирования — от точки к точке. Робот предназначен для электродуговой сваркп в среде СО2 сложных ферменных конструкций массой не более 150 кг, включая массу сварочного кондуктора. Точность позиционирования + 0,5 мм.  [c.82]

СТЗ, установленная на промышленный робот с позиционной системой управления типа ТУР-10, имеющей 5 степеней подвижности, грузоподъемность 10 кг и возможность вращения, качения, сгиба и поворота кисти и закрепленного на ней датчика или детали в диапазоне расстояний до 1250 мм, представляет собой новый качественный уровень РТК НК. Подобные контрольно-измерительные роботы могут одновременно вьшолнять часть функдай сборочных и других автоматизированных технологических агрегатов.  [c.117]

Роботы nefmeo поколения (программные роботы) характеризуются жесткой программой действий и элементарной обратной связью. К ним обычно относятся промышленные роботы (ПР). В настоящее время эта система роботов наиболее разработана. ПР первого поколения делятся на универсальные, целевые ПР подъемно-транспортной группы, целевые роботы производственной группы. Кроме того, роботы распределяются на типоразмерные ряды, на ряды по максимальной производительности, по радиусу обслуживания, по числу степеней подвижности и т. д.  [c.75]

Роботы предъявляют специфические требования к технологии изготовления изделия необходима высокая точность всех заготовок узла, стабильность положения сварного сбединения в пространстве и высокое качество сварочных материалов. Возможность использования роботов определяется размерами и формой их рабочего пространства, точностью позиционирования, скоростью перемещения, числом степеней подвижности инструмента, особенностями управления.  [c.323]

Для перемещения не ориентированных в пространстве предметов достаточно трех степеней подвижности, а для полной пространственной ориентации - щести. Для выполнения сварных швов в общем случае необходимо иметь пять степеней подвижности. Обычно три степени подвижности обеспечивает базовый механизм робота, а еще две степени добавляет механическое устройство - кисть робота, на которой крепится рабочий инструмент (сварочная головка, клещи для контактной сварки или газовый резак). Базовый механизм робота может быть выполнен в прямоугольной (декартовой), цилиндрической, сферической и ангулярной (антропоморфной) системах координат (рис. 166). Система координат базового механизма определяет конфигурацию и габариты рабочего пространства робота, в пределах которого возможно управляемое перемещение его исполнительного органа. Робот с прямоугольной системой координат имеет рабочее пространство в виде прямоугольного параллелепипеда (рис. 167, а), размеры которого меньше габаритов самого робота. Промышленные роботы с цилиндрической (рис. 167, б) и сферической (рис. 167, в) системами координат обслуживают более объемное пространство при сравнительно малой площади основания манипулятора. Более компактными являются роботы, выполненные в антропоморфной системе координат, образующие рабочее пространство, близкое к сфере (рис. 167, г).  [c.323]

В роботах применяют гидравлические, пневматические и электромеханические приводы. Пневмопривод конструктивно прост, однако при его использовании требуемое перемещение инструмента (углы поворота, длина хода) задают только перестановкой упоров, т.е. по каждой степени подвижности имеются только два положения. Гидравлический привод компактен и позволяет управлять инструментом с большой точностью. Электропривод требует использования сложных безлюфтовых редукторов, но зато он проще в обслуживании и обеспечивает высокие быстродействие и точность. Этот тип привода используют, как правило, в сварочных роботах. Пневмопривод применяют в промышленных роботах для сборки деталей, при погрузочно-разгрузочных, транспортных и складских работах.  [c.325]

К основным техническим характеристикам роботов относятся номинальная грузоподъемность, число степеней подвижности, форма и размеры рабочей зоны, погрешность прзициро-вания или отработки траектории. По грузоподъемности (ГОСТ 25204-82) подъемно-транспортные роботы подразделяют на сверхлегкие (до 1 кг), легкие (от 1 до 10 кг), средние (от 10 до 200 кг), тяжелые (от 200 до 1000 кг) и сверхтяжелые (более 1000 кг).  [c.70]

Множество вариантов моделей роботов, предварительно отобранное из банка данных, с удовлетворением требований по грузоподъемности включает 96 моделей, с учетом числа степеней подвижности — 78, с учетом точиостн позиционирования — 66, с 1учетом линейного перемещения — 28 моделей (табл. 7.2).  [c.246]

Основные требования к конструкциям ПР. Применение ПР в конкретных производственных условиях целесообразно, если его конструкция удовлетворяет основным требованиям. В число требований входят соответствие конструктивно-технологических параметров ПР (грузоподъемность, скорость перемещений рабочих органов, точность позиционирования, размеры рабочей зоны, тип СПУ, степень защищенности от влияния окружающей среды и т.д.) предполагаемому функциональному назначению. Объем операций, выполняемых ПР, и темп их исполнения в сочетании с затратами на приобретение и внедрение ПР должны обеспечивать технико-экономическую эффектйвность применения ПР — нижнюю границу целесообразности применения ПР. Верхняя граница темпа работы ПР диктуется требованиями технологии и вместе с объемом возлагаемых на робот операций экономически целесообразным техническим уровнем конструкции ПР. Должны быть обеспечены соответствие числа степеней подвижности ПР минимально необходимому для выполнения требуемого объема операций (действий) минимизация типоразмеров вспомогательных механизмов, устройств и средств автоматизации, необходимых для правильного течения тех нологического процесса, а также возможновть состыковки робота с основным технологическим оборудованием различного типа и средствами автоматизации, в комплексе с которыми предполагается работа ПР, простота и короткий цикл переналадки, надежность и невысокая  [c.377]

Любая система координат переносных движений принципиально пригодна для любого способа сварки. Однако для дуговой сварки чаще всего применяют роботы с угловой системой координат. Это объясняется перечисленными выше преимуществами звеньев с вращательным движением. Наибольшей популярностью пользуются сравнительно небольшие шестикоординатные сварочные роботы с угловой системой координат, перемещаемые с помощью манипуляторов-расширителей зоны обслуживания, имеющих одну, две или три степени подвижности с прямолинейным перемещением. При одной подвижности манипулятора-расширителя робог может устанавливаться в нижнем или потолочном положении. При двух и трех подвижностях, как правило, используется потолочное положение робота. В случае применения поворотных консолей  [c.119]


Ориентирующие движения робота (от одного до трех) осуществляются относительно непараллельных осей. Известные механизмы ориентирующих движений роботов для дуговой сварки могут быть сведены к восьми типовым схемам (рис. 2.2) и по числу ориентирующих подвижностей бывают с одной (рис. 2.2, а, б), двумя (рис. 2.2, в, г, д, е, ж) и тремя (рис. 2.2, з) степенями подвижности. В некоторых случаях в блок механизмов ориентирующих перемещений встраивают механизм поступательного движения (рис. 2.2, б), благодаря чему обеспечивается сварка швов по дуге окружности разного радиуса при относительно простой системе управления (числовой позиционной или даже цикловой). Если оси всех ориентирующих вращений проходят через точку сварки (рис. 2.2, а, д, е), то переносные координаты становятся независимыми от ориентирующих. В результате упрощается задача автоматического управления манипуляцион-  [c.120]

Изделие выполняет все перемещения, необходимые для сварки, а сварочный инструмент закреплен неподвижно. В общем случае этот способ требует применения манипулятора изделия с пятью—шестью степенями подвижности, т. е. использования промышленного робота в качестве манипулятора изделия. Применение этого варианта ограничено грузоподъемностью современных роботов. Он применим при дуговой сварке достаточно жестких конструкций компактной формы, не требующих крепления в сложных и тяжелых сбо-рочно-сварочных приспособлениях. Сварка выполняется с помощью стационарно закрепленного сварочного аппарата. При этом один и тот же промышленный робот выполняет как загрузочно-разгрузочные операции, так и сварочные и вспомогательные перемещения.  [c.121]

Известны две группы методов программирования манипуляционных систем роботов и их комплексов для сварки обучения (on-line) — задание программы с использованием манипуляционной системы робота или комплекса внешнего программирования (off-Jine) — составление программы без использования манипуляционной системы. Различают следующие методы обучения с использованием обратимой кинематики манипулятора инструмента и перемещением сварочного инструмента или его имитатора вручную по линии соединения с использованием рукоятки обучения со встроенными в нее датчиками, воздействующими на приводы звеньев в режиме слежения за рукой оператора с использованием дистанционного управления с пульта обучения для последовательного перемещения сварочного инструмента в характерные точки траектории и языка программирования для описания характера траектории между указанными точками и скорости перемещения между ними. Дистанционное управление может быть реализовано как управление отдельными степенями подвижности с помощью кнопок или посредством многокоординатного переключателя-рукоятки.  [c.131]

Создание сварочных РТК с большим числом степеней подвижности. Сварочные роботы с шестью степенями подвижности, выполненные в угловой системе координат, почти полностью вытеснили пятистепенные роботы. При необходимости сварки конструкций больших габаритных размеров шестистепенные роботы устанавливают на одно-, двух-и трехкоординатные манипуляторы-расшири-тели рабочей зоны, построенные в прямоугольной системе координат. Такие манипуляторы-расширители могут нести больше двух роботов при перемещении каждого из них независимо от других по одной, двум или трем координатам. Только для манипулирования горелками в одном РТК с двумя роботами может использоваться до 18 степеней подвижности. Манипулятор изделия обычно имеет одну, две, реже три или четыре степени подвижности. В одном РТК может быть несколько манипуляторов изделия.  [c.146]

Робот состоит из многозвенного манипулятора, системы управления и рабочего инструмента, которым может быть сварочный инструмент (сварочные клещи, сварочный пистолет, головка для роликовой сварки) или захват для взятия и перемещения свариваемых деталей, а также собранного под сварку изделия или готовой сварной конструкции. Они имеют от двух до шести степеней подвижности и строятся в прямоугольной, цилиндрической, сферической и угловых системах координат. Роботы с двумя—четырьмя степенями подвижности применяют для сварки изделий простой формы, например плоскостных конструкций. Они являются специализированными, поскольку пригодны для ограниченного круга операций, в отличие от универсальных пяти-шестикоординатных, которые могут быть запрограммированы на выполнение практически любой задачи. Классификация рассматриваемых роботов приведена на рис. 3.1.  [c.203]

Роботы классифицируют по следующим признакам по назначению — специальные, специализированные и универсальные (многоцелевые) по кинематике и базовой системе координат — прямоугольные (плоские и пространственные), полярные и ангулярные (плоские, цилиндрические и сферические) по числу степеней подвижное (обычно до шести, не считая движения захвата) по размеру рабочего (сборочного) простраиства по грузоподъемности - сверхлегкие (до 1 кг), легкие (до 10 кг), средние (до 200 кг), тяжелые (до 1000 кг) и сверхтяжелые (свыше 1000 кг) по степени мобильности робота стационарные, передвижные, встроенные в оборудование, напольные, подвесные по числу захватов — одно- и многозахватные по системам управления — цикловые, аналоговые, с ЧПУ, микро-  [c.314]

Универсальность действия робота-манипулятора обеспечивается также тем, что он имеет исполнительный механизм, имитирующий человеческую руку. Полнота имитации движений руки, т. е. количество звеньев и степеней подвижности, различна в зависимости от назначения робота. Кроме того, ее движения могут отличаться по характеру от движения руки человека, например, тем, что она не только вращается в суставах, но и движется поступательно. Кроме того, может изменяться длина некоторых ее звеньев (с помощью телескопического устройства). Кисть руки имитируется в виде захвата — двупалого, трехпалого и более. В кисть, в захват или вместо захвата может быть помещен различный сменный инструмент (рабочий и измерительный), который робот сам берет в нужные моменты из специальных гнезд, а затем кладет обратно.  [c.307]


Смотреть страницы где упоминается термин Робот степень подвижности : [c.64]    [c.78]    [c.347]    [c.38]    [c.510]    [c.751]    [c.475]   
САПР и автоматизация производства (1987) -- [ c.270 ]



ПОИСК



Промышленные роботы степени подвижности

Робот

Степень подвижности



© 2025 Mash-xxl.info Реклама на сайте