Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения модели упругого тела основные

Модели для анализа напряжений и упругих деформаций твердых тел формируют с помощью основного уравнения теории упругости — уравнения Ламе. Это уравнение получается из условия равновесия сил, действующих на элемент твердого тела в направлении оси Xii  [c.157]

Если форма тела и условия нагружения достаточно просты и если поведение материала может быть представлено одной из простейших моделей, то приведенную выше систему уравнений можно проинтегрировать непосредственно (см. задачу 9.22). Однако для более общих условий обычно принято искать решение, пользуясь принципом соответствия упругой и вязкоупругой задач. Этот принцип основывается на том, что система основных уравнений теории упругости и преобразования Лапласа по времени вышеприведенной системы основных уравнений теории вязкоупругости записываются одинаково. Соответствующие уравнения для квазистатических изотермических задач, в которых черточки означают преобразования Лапласа по времени, например  [c.292]


Тем же автором в работе [77] рассмотрены задачи о контакте качения между вязкоупругими цилиндрами, между вязкоупругим цилиндром и жесткой полуплоскостью, между жестким цилиндром и вязкоупругой полуплоскостью. Исследование проводилось в предположении установившегося качения, равных нулю касательных усилий в зоне контакта, а также отсутствия инерционных эффектов. Рассматриваемые задачи свелись к решению соответствующих сингулярных интегральных уравнений относительно распределения контактного давления, ядра которых обладают как сильной, так и слабой сингулярностью. Введение малого геометрического параметра позволило упростить полученные интегральные уравнения, метод решения которых основан в дальнейшем на применении конечного преобразования Гильберта. Контактное давление получалось использованием обычного обратного преобразования. Предложенный способ решения сингулярных интегральных уравнений применим к весьма общей модели вязкоупругого тела с конечным спектром характерных времен. В одном из разделов данной работы наиболее подробно рассмотрен случай, когда материал характеризуется единым временем памяти. Определяя величину у как отношение времени движения частицы в зоне контакта к мере памяти, исследованы возможные случаи поведения материала. В частности, малой величине у соответствует быстрое качение цилиндра и в основном упругое поведение мате-  [c.402]

Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]


Подставляя (24) и (25) в (26) и используя (9), приходим к нелинейному интегральному уравнению, в процессе численного решения которого находилось P t). В [2] проведены эксперименты по продольному удару тела по стержню конечной длины. В данной работе все исходные данные взяты из [2]. В [3] рассмотрен продольный удар тела по полубесконечному стержню. Сравнение результатов расчетов основных параметров удара с экспериментальными данными из [2] показывает, что теория Сирса, построенная на основе упругой модели Герца, дает завышенные значения в среднем на 20-30% по сравнению с экспериментальными и заниженное значение Т. Теория, построенная на упругопластической модели Кильчевского, дает заниженное значение на 30 0% и завышенное значение Т. Предлагаемая теория, построенная на модели (9), дает результаты, отличаюш иеся от экспериментальных на 2-6%.  [c.532]

Термопластическая сплошная среда с памятью. Существует широкий класс материалов, которые при деформации проявляют одновременно упругие, пластические и вязкие свойства, не имея при этом четко выраженного предела упругого деформирования. Вязкопластические свойства у таких материалов могут проявляться при малых напряжениях и сравнительно невысоких по сравнению с То уровнях температуры. Для описания их поведения к настоящему времени предложены различные математические модели с едиными определяющими уравнениями для процессов как нагружения, так и разгрузки. Подобный подход позволяет не рассматривать образование в деформируемом теле зон упругой и неупругой деформации. Модель сплошной среды с памятью и внутренними параметрами состояния относится именно к этой группе моделей. Основная идея, применяемая в данном случае, состоит во введении в рассмотрение приведенного времени, базируясь на различных исходных предпосылках.  [c.161]

Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

Для изучения процесса разрушения и волн напряжений в зоне взрыва предлагалось много подходов с использованием разнообразных усложненных моделей сплошной среды. Отметим вначале основные результаты, полученные путем формулировки математической модели и решения определенных граничных задач для соответствующих дифференциальных уравнений. Все эти результаты опираются на различные варианты описания упруго-пластического тела.  [c.451]

Как уже отмечалось, рассматриваемая модель разрушения— это двухфазная модель, которая имеет две последовательные фазы разрушения. Первая фаза разрушения состоит в том, что элемент сплошной среды переходит в некоторое промежуточное состояние (концевая зона), а затем, уже во второй фазе, трещина разрушения, попадая в концевую зону, производит его окончательное разрушение. На начальном этапе развития трещина двигалась по первоначально сформированной концевой зоне (предполагается, что к моменту =0 в теле уже существует трещина длиною U с концевой областью flfo)) и поэтому берега разреза в концевой зоне уже имели дополнительное раскрытие за время инкубационного периода (второе слагаемое в уравнении (9.2)). На втором, основном, этапе развития трещины такой ситуации уже нет. Трещина последовательно разрывает сплошной материал, формируя перед этим концевую область. Раскрытие берегов разреза в концевой области начинается с момента попадания вершины концевой области в соответствующую точку вязко-упругого тела. Обозначим этот момент t. Уравнение медленного роста трещины на этом этапе, как и в предыдущем случае, получим, полагая, что в любой момент развития трещины выполняется условие (9.1). В этом случае имеем  [c.83]


Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]

Монотонное нагружение обычно реализуется при простом нагружении, когда все внешние силовые факторы изменяются пропорционально одному возрастающему параметру. При простом нагружении соотношение между внешними нагрузками в процессе нагружения остается неизменным. Если наступает процесс разгрузки, когда во всех точках тела иитеисивность напряжений убывает (например, при снятии В1гешних усилий), то приращение (уменьшение) напряжений и деформаций ка этапе разгрузки определяется на основе уравнений упругости (закон разгрузки см. рис. 5.15). Основные ограничения рассматриваемой модели пластичности связаны с тем, что уравнения пластич-  [c.129]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

В дальнейшем пользуемся упрощенной моделью, в которой предполагается, что взаимодействие тела с преградой происходит в течение всего времени пребывания тела в области л >0. Ясно, что это время больше значения t из предыдущей задачи, и для моментов времени t>f получаем физически абсурдную картину стенка удерживает тело т, когда оно двил<ется от стенки в отрицательном направлении. Таким образом, вторая модель не претендует на физическое обоснование теории удара. Однако (какпоказано ниже) в результате некоторого предельного перехода она также приводит к модели удара с трением, изложенной во введении, а простота получающихся при этом формул позволяет развить эффективный метод решения ряда задач устойчивости движения в системах с неудерживающими связями (см. гл. 3). Идея метода состоит в следующем односторонние связи заменяются средой Кельвина — Фойгта, и в решениях полученных уравнений движения совершается предельный переход, при котором коэффициенты упругости и диссипации некоторым согласованным образом устремляются к бесконечности. В пределе получается движение системы с неупругим ударом, причем характеристики среды Кельвина —Фойгта определяются по заданному с самого начала коэффициенту восстановления. Такой подход позволяет при решении задач о движении систем с ударами использовать обычные дифференциальные уравнения динамики с дополнительными силами определенного вида. Основным результатом здесь являются теоремы  [c.41]



Смотреть страницы где упоминается термин Уравнения модели упругого тела основные : [c.539]    [c.219]    [c.549]    [c.4]    [c.7]    [c.7]   
Механика сплошной среды. Т.2 (1970) -- [ c.312 ]



ПОИСК



Модель упругого тела

Упругие тела

Уравнение основное

Уравнения Уравнения упругости

Уравнения основные

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте