Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Укладка конструкций

Скорость посадки — минимальная скорость опускания груза при монтаже и укладке конструкций или грузов, при работе с предельными грузами и т. п.  [c.11]

В ПНР дается технологическая схема монтажа, включающая разбивку объекта на монтажные зоны, расстановку и передвижение кранов в пределах монтажной зоны, доставку и последовательность укладки конструкций в проектное положение, соблюдение требований безопасного производства работ. До начала работ должен быть известен порядок въезда крана в пределы монтажной зоны и его выезда после окончания смены. Если на пути движения крана до-  [c.310]


Погрузка, разгрузка н укладка конструкций пути  [c.235]

Между острыми ребрами металлоконструкций или отдельных элементов должны устанавливаться прокладки, предохраняющие стропы от истирания (рнс. УШ.б). Должно быть предотвращено падение прокладок во время укладки конструкций или элемента. Чтобы канат не выпадал с крюка при ослаблении его натяжения во время опускания фермы или другой пространственной металлоконструкции. захватные приспособления должны снабжаться замыкающими устройства.ми. Металлоконструкции, не обладающие достаточной жесткостью, до начала перегрузки необходимо временно  [c.379]

Краны должны быть установлены соосно по оси фундамента. Соосность установки крана проверяют до укладки конструкции в  [c.181]

Для предохранения покрытия от механических повреждений при перевозке и укладке конструкций рекомендуется обертывать их крафт-бумагой или аналогичными материалами. Обертывание крафт-бумагой производится по спирали лентой шириной 30—40 см по горячей битумной мастике с перекрытием внахлестку на 2—3 см.  [c.79]

Монтаж изоляции трубопроводов полносборными и сборными конструкциями является наиболее производительным. Монтаж теплоизоляционными конструкциями ТК включает снятие транспортного крепления, развертывание и укладку конструкций на трубопровод с подгонкой по месту, крепление конструкции (рнс. 30.1).  [c.458]

Процесс сборки подшипников скольжения состоит из их установки, пригонки, укладки вала и иногда регулирования опор. Подшипники скольжения применяются цельными, в виде втулок, и разъемными. Установка цельного подшипника в корпус заключается обычно в его запрессовке, закреплении от провертывания и подготовке отверстия. Запрессовка в зависимости от размеров втулки, натяга в сопряжении, конструкции узла н программы выпуска может быть выполнена в холодном виде, с нагревом отверстия корпуса или же с охлаждением самой втулки.  [c.502]

Соединение полками в одну сторону компактнее. В конструкциях 11, 12 ширина узла (в плоскости, перпендикулярной к плоскости чертежа) примерно вдвое меньше, чем в конструкциях 13, 14. Однако в конструкциях 13, 14 узлы и фермы в целом получаются пространственно более жесткими укладка швов проще, вследствие чего эти конструкции широко применяют на практике.  [c.192]

Система из нитей трех различных направлений будет геометрически неизменяема, поэтому современные композиты выкладываются таким образом, чтобы было не менее трех направлений армирования. Если принять за ось Xi среднюю линию пластины, то обычная укладка — это укладка в четырех направлениях под углами к этой оси О, л/2, ф. При чередовании слоев следует сохранять симметрию относительно средней плоскости, чтобы растяжение не сопровождалось изгибом. Варьируя количество слоев той или иной ориентации и меняя угол qi, можно в известном смысле оптимизировать конструкцию, выбирая же-  [c.709]


Несущая способность элементов конструкций по сопротивлению усталости при циклическом нагружении рассматривается в свете вероятностных представлений о возникновении разрушения и об уровне действующих переменных напряжений. При этом следует иметь в виду основные условия нагруженности изделий и их элементов. Многим из них свойственны стационарные режимы переменной напряженности, уровень которой в пределах большого парка однотипных конструкций и их деталей от изделия к изделию меняется, причем отклонение уровней носит случайный характер. Примером таких деталей являются лопатки стационарных турбомашин. Условия возбуждения колебаний этих деталей в однотипных машинах зависят от изменчивости условий газодинамического возбуждения и механического демпфирования, уровня частоты собственных колебаний и эффекта их связности в роторе с лопатками (что обычно является результатом технологических отклонений). Подобные условия имеют место и для многоопорных коленчатых валов стационарных поршневых машин при укладке их на не вполне соосные опоры, для шатунных болтов из-за неодинаковости их монтажной затяжки и т. д.  [c.165]

Материалы с переменной плотностью по толщине применяют в конструкциях, нагружаемых перпендикулярно плоскости армирования [38]. У композиционных материалов, изготовленных по схеме 1.2, ж, наружные слои обладают высокой прочностью и жесткостью на изгиб и кручение, а внутренние — достаточным сопротивлением межслойному сдвигу. При наличии волокон, искривленных только в направлении х, изменение угла наклона О приводит к улучшению одних характеристик материала и ухудшению других (рис. 1.3). Комбинированная укладка прямых и искривленных волокон в направлении х (см. рис. 1.2, д, е) позволяет регулировать характеристики материала за счет их объемного соотношения.  [c.13]

К сожалению, при настоящем уровне знаний эти напряжения не могут быть полностью рассчитаны. Таким образом, влияние усталости в элементах, вероятно, будет более значительным чем то, которое наблюдается в исследованиях образцов на осевое усталостное нагружение, когда оси нагружения и укладки волокон совпадают. Это приводит к крайней необходимости исследований при сложном напряженном состоянии. Но даже тогда, когда такие испытания будут полностью проведены, свойства ответственных элементов конструкций необходимо проверить при их натурных испытаниях.  [c.392]

Для защиты от коррозии при укладке в землю свинцовую оболочку кабелей обвертывают несколькими чередующимися слоями пропитанной бумаги и жидкотекучего битума. Для механической защиты на кабелях небольшого диаметра предусматривается броня из тесно прилегающих друг к другу витков круглой проволоки па кабелях большого диаметра выполняется броня в виде плющеной проволоки (плоской оплетки). Поверх брони располагается слой пропитанного джута, который хотя и дает некоторую защиту от коррозии, но не обеспечивает электрической изоляции оболочки кабеля по отношению к земле. Бесспорные преимущества по защите от коррозии имеют бесшовные и беспористые оболочки (шланги) из полиэтилена толщиной 1,6—4,0 мм. Активная катодная защита от коррозии поэтому применяется главным образом для кабелей со свинцовой оболочкой, имеющих джутовую изоляцию. Кабели с оболочками из других металлов могут быть подключены к системе катодной защиты, но при этом должны быть проведены особые предупредительные мероприятия [3]. У кабелей с гофрированной стальной оболочкой жилы охватываются лентой из углеродистой стали, сваренной продольным швом без нахлестки. На изготовленной таким способом трубе-оболочке выполняют поперечные гофры для придания ей гибкости. Впадины гофров заполняют пластичной массой, прочно сцепляющейся и с металлом, и с полимерным материалом, а затем всю конструкцию обматывают лентой из полимерного материала. Поверх этого слоя далее получают экструдированием полимерную оболочку из полиэтилена. Полимерная оболочка получается практически беспористой и поэтому обеспечивает хорошую защиту от коррозии. Дефекты могут образоваться только на муфтах и в местах механических повреждений.  [c.299]

Каждая глава книги снабжена краткой аннотацией и подробным введением, поэтому нет необходимости останавливаться на их содержании. Хотелось бы выделить одну особенность, присущую книге. В большинстве публикаций прошедших лет по механике композитов явно или неявно используется прием замены композитов с разным законом укладки арматуры приведенной квазиоднородной средой. Этот подход оказался весьма плодотворным в задачах жесткости и устойчивости и недостаточным при оценке несущей способности конструкций из композитов, особенно с переменным по толщине законом укладки арматуры. Прочность и разрушение композитов существенно зависят от эффектов  [c.5]


Для уменьшения напряжений в трубопроводах необходимо обеспечивать их гибкость, изменяя направление укладки с помощью колен, петель и отводов и компенсируя тепловые расширения путем применения гофрированных труб и сифонов, шаровых соединений и других компенсаторов. Опоры, крепления и ограничители не должны препятствовать свободному перемеще -нию труб, обусловленному работой опорной конструкции, а также их тепловым расширением и сжатием. Необходимо использовать поперечные связи и гасители колебаний, допускающие движение трубопровода под действием вибраций.  [c.43]

Ортотропные материалы получают укладкой анизотропных элементарных слоев, в качестве которых используют шпон, ткани, первичную нить, ленты, жгуты. Характерной особенностью этих материалов являются их высокие удельные физико-механические свойства в заданных направлениях. Из них изготавливают корпусные конструкции, трубы, оболочки, резервуары, гребные винты различные профильные элементы. Изделия из ортотропных материалов получают методами горячего, контактного или вакуумного формования, намотки, протяжки.  [c.6]

При эксплуатации в указанных изделиях, как правило, возникает сложное напряженное состояние. Материалы ППС позволяют достаточно близко согласовать поле напряжений и поле сопротивления. Зная соотношение между главными напряжениями в материале конструкции, можно получить соотношение и между характеристиками прочности соответствующей укладкой армирующего материала.  [c.8]

В отдельных случаях проектирования и изготовления конструкций целесообразно использование различных комбинированных структур. Комбинированные структуры получают последовательной укладкой слоев определенной толщины, каждый из которых представляет собой конкретную структуру. Такими структурами могут быть ОС, ППС, КПС, ТПС, которые образуют пакетную или дисперсную структуры. Кроме того, в качестве  [c.8]

Контактное формование. Переработка композиционных материалов методом контактного формования, применяется в основном при изготовлении крупногабаритных конструкций и изделий сложной конфигурации. Данная технология предусматривает предварительную пропитку связующим армирующего материала, укладку его на модель изделия с последующей выдержкой при нормальной или повышенной температуре для отверждения. В настояшее время отсутствуют механизированные способы укладки армирующего материала. Ручная укладка пропитанных слоев наполнителя создает тяжелые условия труда, трудности текущего контроля за правильностью раскроя материала, равномерностью пропитки его связующим, как правило, не обеспечивает точного взаимного расположения слоев. В процессе пропитки армирующего материала трудно обеспечить постоянную вязкость связующего, вследствие протекающего процесса полимеризации при температуре окружающей среды. Особенно это характерно при формовании изделий из полиэфирных стеклопластиков.  [c.12]

Металлы, металлоизделия и металлоконструкции небольшой массы (прогоны, связи, ограждения, косоуры и т. д.) стропуют по несколько штук вместе, образуя пакет (ГОСТ 15539—75). Тяжелые элементы стропуют каждый в отдельности (рис. УП1.2). При складской переработке необходимо строповать металлы и металлоконструкции не менее чем за два конца для предотвращения прогиба их средней части и консольных выступов. Места строповки на поднимаемых металлоконструкциях (в несущих узлах) должны быть намечены заранее с учетом положения их центра тяжести. При необходимости положение центра тяжести конструкции может быть установлено путем пробных подъемов на высоту 0,5—1 м от уровня основания. Между острыми ребрами металлоконструкций или отдельных элементов должны устанавливаться прокладки, предохраняющие стропы от истирания. Должно быть предотвращено падение прокладок во время укладки конструкций или элемента. Чтобы канат не выпадал с крюка при ослаблении его натяжения во время опускания фермы или другой пространственной металлоконструкции, захватные приспособления должны снабжаться замыкающими устройствами. Металлоконструкции, не обладающие достаточной жесткостью, до начала перегрузки необходимо временно усилить специальными щитами (это должно быть предусмотрено проектом производства работ).  [c.348]

Подъем горизонтальных конструкций и установка их на втором этаже наиболее эффективны с применение.м кранов и направляющих. Подъе.м на необходимую высоту и укладку конструкции на направляющие выполняют с помощью крана перемещение конструкции по направляющим к месту установки и установку конструкции на фундамент выполняют лебедкой. Направляющие укладывают по всей длине пути по перекрытию и, кро.ме того, на дополнительные стойки вне здания.  [c.214]

При возможности использования средств, которыми конструкция была перемещена к фундаменту, для укладки конструкции на фунда.чент в исходно.м к подъему положении место строповки конструкции назначают на небольшом расстоянии (1...3 м) от центра тяжести, бдпже к вершине конструкции конструкцию укладывают на фундамент так, чтобы место ее строповки располагалось по оси фундамента и мачт. При тако.м расположении места строповки возможно применение мачт минимальной высоты. Кроме того, такое расположение места строповки обеспечивает отклонение грузовых полиспастов в плоскости мачт в конечной сталии подъема аппарата на минимальный угол, что также позволяет уменьшить нагрузки на такелажные средства.  [c.227]

С целью предохранения покрытия от механических повреждений дри перевозгке и укладке конструкции (рекомендуется обертывать ее крафт-бумагой или аналогичными материалами.  [c.91]

Крафт-бумага предохраняет мастику от оплывания и механических ее повреждений при транспортировке и укладке конструкций.  [c.94]

Покрытие поставляют в виде двух компонентов — концентрированной композиции К Б-2 и полизтиленполиамина, которые перед употребл-ением смешивают. Композиция пригодна для заделки раковин, крупных трещин и обнаженной арматуры, образовавшихся при транспортировке и укладке конструкций, а также заделки дефектов, полученных ими в процессе эксплуатации. Она может быть использована и для омоноличивания швов и окраски.  [c.152]


ВОЛН 20—150 мм. При этом чувствительность к локальным дефектам оказывается низкой. Для ее увеличения частоту колебаний можно повысить до 600 кГц — для бетона толщиной 100—150 мм, до 400 кГц — для толщин до 200 мм и до 300 кГц—для толщин до 500 мм. При дефектоскопии крупных железобетонных конструкций иа низких частотах чувствительность контроля невысока, однако некоторые специфические дефекты, обусловленные недсброкачественной укладкой бетона, коррозионными разрушениями, воздействием огня или промерзанием, обнаруживаются достаточно четко.  [c.314]

Одним 113 главных преимуществ ориентированных стеклопластиков является высокая удельная прочность в направлении армирования. Практическая реализация этого иреимуще-ства ограничена трудностями, обусловленными относительно низким сопротивлением ориентированных стеклопластиков межслойному сдвигу = 25 50 МПа, "= 2000 2500 МПа) и поперечному отрыву (/ i= 20- 55 МПа), а также сравнительно малой жесткостью ( П 25- 60 ГПа) даже в направлении укладки волокон. Несущая способность тонкостенных конструкций, работающих на устойчивость, в результате сравнительно низкой жесткости стеклопластиков часто теряется задолго до достижения напряжениями предельных значений [56, 80]. 1 1рн создании толстостенных изделий указанные отрицательные особенности начинают проявляться более ярко, так как возрастает число технологических факторов, определяющих эти особенности [6].  [c.6]

Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

Значительное внимание уделяется в последнее время применению железобетонных шпал, более прочных и долговечных по сравнению с деревянными. Первые опыты укладки таких шпал были проведены на советских железных дорогах еще в 20-х годах, но около двух десятилетий — до освоения производства предварительно напряженного бетона — продолжались затем поиски их рациональных конструкций с повышенной прочностью, и только в 1949 г. начались регулярные испытания в нормальных эксплуатационных условиях. В 1955 г. было начато строительство специализированных заводов для изготовления бетонных шпал, и с конца 50-х годов типовые цельнобрусковые струнобетонные шпалы стали поступать на особо  [c.218]

В 1926 г. с целью уменьшения количества стыков — одного из самых уязвимых элементов конструкции рельсового пути — на железных дорогах СССР была введена термитная сварка короткомерных рельсов. С середины 30-х годов наряду с нею стала применяться более производительная электродуго-вая сварка, а в 1943 г. впервые был применен еще более совершенный способ электроконтактной сварки со стационарными и передвижными сварочными установками, получивший в дальнейшем преимущественное распространение. Положительный опыт рельсосварочных работ и совершенствование сварочной технологии привели к разработке конструкций так называемого бесстыкового пути, составляемого из 800-метровых рельсовых сварных плетей, чередующихся со вставками из нескольких рельсовых звеньев нормальной длины. Первая экспериментальная проверка отдельных участков такого пути, характерного высокой стабильностью и обеспечивающего плавность хода подвижного состава при больших скоростях движения, была предпринята в Советском Союзе еще в 1935 г. Тогда же проф. К. Н. Мищенко разработал теоретические основы его конструирования. Но широкое применение его на эксплуатируемых и вновь строящихся линиях началось, как и в большинстве других стран, лишь в послевоенный период — с появлением в путевом хозяйстве тяжелых рельсов и более совершенных рельсовых скреплений. К концу 1970 г. общая длина бесстыкового пути будет доведена примерно до 20 тыс. км, преимущественно на тех же направлениях, для которых предусматривается укладка железобетонных шпал [16].  [c.219]

С начала 30-х годов на работах по сооружению верхнего строения пути стали применять предложенные В. И. Платовым путеукладчики (рис. 58) — передвижные машины кранового типа для укладки рельсо-шпальной решетки (рельсов, скрепленных со шпалами), звенья которой, равные длине одного рельсового звена (12,5 м), заготовлялись на звеносборочных базах. Тогда же началось применение балластировочных машин (балластеров), спроектированных Ф. Д. Барыкиным, П. Г. Белогорцевым и В. А. Алешиным и производящих подъемку рельсо-шпальной решетки, дозирование и разравнивание по ширине пути слоя балласта, предварительно выгруженного на обочины земляного полотна, и последующую рихтовку пути (его выправление относительно проектной продольной оси). С 1932 г. начался выпуск путевых стругов Ф. Д. Барыкина и Н. В. Корягина, использовавшихся для очистки кюветов и срезки обочин полотна, а в 1940 г. В. А. Алешиным, Г. М. Девьяковичем и А. В. Лобановым была разработана конструкция электробалластера с электромагнитами подъемной силой 30 т для вывешивания рельсо-шпальной решетки и со специальными электроустройствами для автоматического выправления перекосов пути.  [c.220]

Все эти мосты возводились из монолитного армированного бетона монтаж арматурных каркасов, приготовление бетонной смеси и укладка ее в опалубку выполнялись непосредственно на строительных плош,адках. Но егце в начале 30-х годов при постройке мостов на магистральной линии Москва — Донбасс были проведены первые опыты применения сборных железобетонных конструкций заводского изготовления. Широко использованные затем в 1939—1940 гг. в мостовых сооружениях железной дороги Карта-лы — Акмолинск (Целиноград), они определили возможность перехода к более совершенным индустриальным методам строительства.  [c.224]

В 1969 г. Лабораторией динамики полета ВВС США была начата разработка деталей главного шасси из композиционных материалов. Эти детали характеризуются сложной конфигурацией и многими конструктивными особенностями, отличающими их от элементов конструкции планера. Кроме того, шасси должно выдерживать высокие динамические нагрузки, возникающие в результате удара при посадке. Внешний обод бокового подкоса (рис. 27), образующий фланец, изготовлен непрерывной намоткой, обеспечивающей укладку слоев по схеме (0,/ 15/02)т- В работающей на сдвиг стенке материал имеет ориентацию слоев (Ог/гЫЗз) . Слоистый пластик на основе рубленых волокон использован для бобышек и узлов наружной подвески. Отверждение детали в сборе производится совместно с алюминиевыми втулками. Углепластиковый двухзвенник (рис. 28) также изготовлен из композиции на основе непрерывных и рубленых волокон и эпоксидной матрицы.  [c.167]


Из формулы (16.13 ) видно большое влияние длины тягового участка /, поскольку он входит в выражение в третьей степени. При выборе расстояний между тяговыми подстанциями нужно также учитывать, что допускаемые по нормали VDE0115 предельные значения напряжений на рельсах наземных железнодорожных путей распространяются на всю железнодорожную сеть, поскольку пути в туннеле и наземные пути образуют общую рельсовую сеть со сквозным электрическим соединением. При определенном профиле рельсов с известной величиной их сопротивления на единицу длины на величину падения напряжения в туннеле может повлиять также качество изоляции рельсов и сквозного соединения всех секций туннеля (значения и / j-должны быть низкими). Согласно измерениям в новых и хорошо дренируемых туннельных сооружениях (со стоком воды), при укладке ходовых рельсов на обычном щебеночном основании может быть достигнута проводимость (утечка с ходовых рельсов на несущую конструкцию туннеля) в расчете на единицу длины G j.<0,l См-км-. Хотя этот показатель с течением времени увеличивается, однако лишь при самых неблагоприятных обстоятельствах он может превысить  [c.327]

Часто разрушение отдельных слоев композита не вызывает существенных изменений в его макроскопическом поведении и с трудом обнаруживается экспериментально. Например, диаграмма при растяжении в направлении армирования слоистого композита с ортогональной укладкой армируюш,их волокон [0790°]s не имеет резких переломов. Разрушение же слоев, ориентированных перпендикулярно направлению нагружения, проявляется наиболее заметно в скачкообразном изменении коэффициента Пуассона. В этом случае анализ поведения слоистого композита на основе свойств составляю-ш,их его слоев помогает установить условия разрушения отдельных слоев. Интерес к поведению слоистых композитов при низких уровнях напряжений не случаен, так как для создания надежных при длительной эксплуатации конструкций понимание процессов частичного разрушения (разрушения отдельных слоев при низких уровнях напряжений) не менее важно, чем оценка предельных напряжений для материала в целом.  [c.105]

Теоретически предсказанные деформационные зависимости и предельные напряжения для различных слоистых композитов сравниваются с результатами испытаний этих материалов в условиях плоского напряженного состояния. Указаны преимущества и недостатки основных типов образцов и соответствующего оборудования, используемого для создания плоского напряженного состояния. При сравнении методов построения предельных поверхностей слоистых композитов особое внимание уделено областям их применения, удобству использования, требованиям к исходным параметрам и тонкостям описания этими методами прочностных свойств реальных композитов. Поскольку большинство методов ограничивается построением предельной поверхности и, следовательно, позволяет предсказать только условия, но не вид разрушения, в главе преобладает макроподход. Оказалось, что ни один из рассмотренных методов не обнаруживает хорошего соответствия с результатами экспериментов и, следовательно, не может быть рекомендован для использования при проектировании ответственных силовых конструкций из композитов, причина этого заключается, по-видимому, в малочисленности экспериментальных данных н несовершенстве существующих подходов в частности, ни один из подходов не учитывает влияние последовательности укладки слоев на напряженное состояние композита. До сих пор остается неисследованным механизм перераспределения нагрузок со слоев композита, в которых достигнуто предельное состояние, на остальные слои материала.  [c.140]

Кроме совершенствования конструкций опалубки обращается большое внимание на необходимость механизации ее перестановки. Так, на строительстве Чиркейской ГЭС была применена консольная деревометалляческая двухъярусная опалубка. Для ее перестановки на базе крана-экскаватора Э-302 был создан специальный кран-перестановщик. В результате оборачиваемость опалубки увеличилась в 30 раз, что позволило достигнуть производительности на укладке бетона до И м /чел-день.  [c.151]

Приведенные выше уровни мощностей строительномонтажных организаций, развитие базы строительной индустрии и механовооруженность обеспечили за годы десятой пятилетки выполнение следующих физических объемов работ земляные насыш и выемки 4050 млн. м , укладка бетона в бетонные и железобетонные монолитные конструкции 51 млн. м , монтаж конструкций из сборного бетона и железобетона 41 млн. м , монтаж металлических KOH TipyKHHtt 11,7 млн. т. Монтаж оборудования в объеме 12,5 млн. т вынолнялся в значительной мере укрупненными монтажными блоками с предварительной сборкой и укрупнением на сборочных укрупни-тельных площадках или РПКБ.  [c.279]

Намотка волокна производилась на модифицированном универсальном токарно-винторезном станке с использованием ходового винта для точной укладки борного волокна (рис. 54). Волокно наматывалось на металлическую оправку с обернутой вокруг нее алюминиевой фольгой. Конструкция такой оправки достаточно подробно описана и показана на рис. 55 (патент США, № 3.575. 783, 1971 г.). Оправка цилиндрическая, разрезная, состоит из двух полуцилиндров I, скрепленных с одной стороны между собой шарниром 2. Обе половины оправки могут раздвигаться до необходимой степени при помощи двух пружин 3 и закрепляться запорной скобой 4. В вырез в запорной скобе входит винт, имеющий форму барашка, закрепляющий оправку в положение подпружинения. Подпружинение оправки позволяет скомпенсировать разницу в термическом расширении между волокном и подложкой из фольги при нагреве их в процессе плазменного напыления и обеспечивает легкий съем напыленной ленты с оправки. Технологические особенности процесса плазменного напыления подробно описаны в гл. V. Схематически процесс намотки показан на рис. 56, а процесс плазменного напыления — на рис. 57.  [c.123]


Смотреть страницы где упоминается термин Укладка конструкций : [c.241]    [c.68]    [c.81]    [c.52]    [c.111]    [c.284]    [c.5]    [c.161]    [c.148]   
Погрузочно-разгрузочные работы (1980) -- [ c.108 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте