Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сеть рельсовая

Рис. 4. 1. Схема возникновения блуждающих токов от сети рельсового транспорта Рис. 4. 1. Схема возникновения блуждающих токов от сети рельсового транспорта

На электрифицированных участках железных дорог пути для перелива горючего из цистерн, не имеющие контактного провода, должны быть, как правило, изолированы [12] от остальной сети рельсовых путей при помощи изолирующих стыков, чтобы по возможности уменьшить стекание тока с рельсов в резервуар-хранилище, контактирующий с землей. Изолирующие стыки должны быть расположены за пределами опасной зоны, причем на тупиковом пути — в его начале, а на путях, соединяющихся с другими железнодорожными путями с обеих сторон — по обе стороны опасной зоны. Устанавливать изолирующие фланцы в трубопроводе к наполнительному патрубку в таком случае не нужно, поскольку защитный ток для резервуара-хранилища при соединении наполнительного устройства с этими рельсовыми путями возрастает лишь  [c.280]

Вторым проводом являются рельсовая цепь 8 и отсасывающая линия 9. Контактная сеть, рельсовые цепи, питающие и отсасывающие линии составляют электротяговую сеть.  [c.154]

Фиг. 284. Схемы применяемых на сети рельсовых Цепей Фиг. 284. Схемы применяемых на сети рельсовых Цепей
Тяговая сеть состоит из контактной (питающей) и рельсовой (отсасывающей) сетей. Рельсовая сеть представляет собой рельсы, имеющие стыковые электрические соединения. Контактная сеть — это совокупность проводов, конструкций и оборудования, обеспечивающих передачу электрической энергаи от тяговых подстанций к токоприемникам электрического подвижного состава.  [c.85]

В случае сближения подземных трубопроводов с рельсовой сетью электрифицированных на постоянном токе железных дорог на участках с устойчивыми отрицательными потенциалами рельсов относительно земли выбирают точки подключения автоматического усиленного дренажа. Радиус действия одного усиленного дренажа, м, может быть ориентировочно определён по формуле  [c.9]

Усиленный автоматический дренаж целесообразно предусматривать и в случае сближения защищаемых трубопроводов с рельсовой сетью трамвая, имеющей устойчивый отрицательный или знакопеременный потенциал. Определение радиуса его действия аналогично вышеприведённой методике.  [c.10]


Положительный полюс источника питания от тяговой подстанции подключается к контактному проводу, а отрицательный - к рельсам. При такой схеме электроснабжения тяговый ток от положительной шины тяговой подстанции по питающим фидерам поступает через контактную сеть и токоприемник к двигателю электровоза, а затем через колеса и рельсы к отрицательной шине тяговой подстанции. Так как рельсы не полностью изолированы от земли, часть тягового тока в соответствии с законом Кирхгоффа стекает с них в землю. Сила стекающего тока, который и является блуждающим, тем больше, чем меньше переходное сопротивление между рельсами и землёй и чем выше продольное сопротивление рельсов (переходное сопротивление "рельс-земля" 0,1-1,0 Ом/км). При условиях, способствующих утечке тока в землю (большое сопротивление стыковых соединений на рельсах, загрязнённость балласта и т.д.), сила блуждающего тока в земле может достигать 70-80% от общей силы тягового тока, т. е. десятков и сотен ампер. Так как на участке между двумя тяговыми подстанциями могут находиться несколько электровозов, то в зависимости от их расположения и силы тягового тока, потенциалы отдельных участков рельсового пути будут изменяться как по величине, так и по знаку.  [c.22]

Сила блуждающего тока не постоянна во времени. Она зависит от мощности электровоза, числа составов и вагонов, курсирующих по линии, их взаимного расположения, состояния рельсового пути, сети подземных сооружений и т. д.  [c.24]

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]

Контроль работы электродренажных установок включает комплекс измерений, проводимых на ПМС, рельсовой сети и цепи дренажной защиты, основными из которых является измерение силы и направления тока дренажа и измерение потенциала трубопровод-фунт .  [c.30]

Длина действующей сети железных дорог, составлявшая в мае 1941 г. 106,1 тыс. км, сократилась к сентябрю 1942 г. до 41,8 тыс. км [23]. На временно оккупированных территориях и в прифронтовых районах было разрушено 65 тыс. км рельсовых путей, 15 945 искусственных сооружений (в том числе 650 мостов длиной свыше 100 м и 1673 моста длиной от 20 до 100 Л4), 4100 станций и 317 депо [13]. Огромный ущерб был нанесен подвижному и тяговому составам, уничтожены десятки тысяч километров линий связи, на 35,5 тыс. км железнодорожных линий выведены из строя устройства полуавтоматической блокировки и электрожезловой сигнализации.  [c.208]

ПРИЧИНЫ УТЕЧКИ тяговых токов с РЕЛЬСОВОЙ СЕТИ  [c.43]

Наиболее мощным источником блуждающих токов является электрифицированный рельсовый транспорт на постоянном токе. Подвижной состав тягового транспорта снабжается электроэнергией постоянного тока от тяговых преобразовательных подстанций (ТПП). Протекание токов по рельсовым ниткам вызывает определенное падение напряжения в рельсовых цепях, благодаря чему разные точки рельсовой сети приобретают различные потенциалы. Для улучшения электропроводимости рельсовой сети устанавливают шунтирующие междурельсовые и междупутные электрические соединения. Таким образом, рель соБый путь транспорта представляет собой непрерывную электрическую цепь и помимо своего прямого назначения служит проводом, по которому ток возвращается на ТПП. Поскольку рельсовый путь не изолирован от грунта, то земля оказывается для них шунтирующим проводником, по которому протекает часть тягового тока. Растекаясь в земле и встречая на своем пути трубопроводы, кабели и другие протяженные металлические сооружения, сопротивления которых значительно ниже сопротивления  [c.43]


I — контактная сеть 2 — нагрузка (транспорт) 3 — рельсовая сеть 4 —трубопровод 5— армированное сооружение.  [c.44]

На рис. 9 приведены общая и эквивалентная схемы протекания блуждающих токов в зоне рельсового транспорта с питанием от постоянного тока. Подвижной состав рельсового транспорта работает за счет замыкания электрической цепи плюс ( f) ТПП — контактная сеть 1 (Як.с) — нагрузка (подвижной состав) 2 (Ra) — рельсы 3 ( р) —земля и подземные сооружения 4,5 (Ra,  [c.44]

После выполнения суточных записей производится обработка полученных результатов и вычисляется ее среднесуточная величина, Аналогичные записи выполняются на рельсах и подземных сооружениях, после обработки которых строят потенциальные диаграммы по средним значениям измеренных величин. При построении потенциальной диаграммы на схеме подземного трубопровода (рельсовой сети), на участках, соответствующих пунктам измерения, откладывают в масштабе полученные значения измеренных величин потенциалов. Вверх откладываются положительные значения, вниз — отрицательные. После нанесения всех значений ординаты их соединяются между собой прямыми линиями. Полученная таким образом потенциальная диаграмма наглядно показывает изменение потенциалов рельс — земля, труба — земля. Многочисленными измерениями установлено, что блуждающие токи не всегда оказывают разрушающее действие на трубопроводы, а во многих случаях даже катодно поляризуют их, аналогично действию катодных станций.  [c.45]

Для выбора мер защиты подземных сооружений от блуждающих токов обычно проводят комплекс электрических измерений. Для проектируемых сооружений можно расчетным путем найти так называемое критическое расстояние между источником блуждающих токов и подземным сооружением, при котором блуждающие токи не будут для него представлять опасность. Однако такое удаление удается осуществить весьма в редких случаях, так как подземные металлические сети в черте города зачастую проходят вдоль рельсовой сети, например, трамвая. При наличии изоляционного покрытия на трубопроводе токи стекают с поврежденных участков, плотность которых в отдельных местах бывает очень велика. В практике встречаются случаи, когда в анодных зонах от действия блуждающих токов образуются сквозные отверстия в стенках труб или резервуаров через несколько месяцев после укладки их в землю. Надо отметить, что только на ремонт тепловых сетей в г. Уфе за пятилетку затраты составили более 2,5 млн. рублей.  [c.47]

Многочисленные измерения потенциалов на рельсовой сети и трубопроводах показывают, что они весьма неустойчивы и зависят от величины и положения нагрузки (транспорта). Скорость процесса коррозии, как следует из закона Фарадея,  [c.47]

Рассмотрим порядок определения блуждающих токов и выбор средств защиты для наиболее распространенной системы (см.. рис. 9), когда параллельно рельсовой сети располагаются в земле протяженные сооружения. На рис. 9, б приведена упрощенная электрическая эквивалентная схема этой системы, где / — ток утечки через близкую землю /ту — ток утечки, шунтируемый трубопроводом (экраном) 4 /ту — ток утечки, шунтируемый удаленным сооружением 5. Общий ток утечки в землю при монтаже и эксплуатации рельсового электротранспорта составляет около 20 процентов [3], тогда  [c.48]

Силовой полупроводниковый вентиль 4, установленный в кабельную перемычку 3, пропускает ток только с трубопровода 1 в рельсы 2 в одном направлении. Место подключения поляризованного электродренажа выбирают по потенциальной диаграмме в катодных участках на рельсах и анодных на трубопроводе. Наибольший эффект достигается в анодных и знакопеременных зонах на защищаемом сооружении (пересечения и сближения с рельсовой сетью). В любом случае поляризованный электродренаж снижает коррозию протяженных трубопроводов, кабелей, расположенных в непосредственной близости от рельсовой сети транспорта.  [c.50]

В г. Уфе на рельсовой сети трамвая эксплуатируется 25 поляризованных электродренажных установок.  [c.50]

Для поднятия потенциала на сооружении до защитных значений применяют так называемый усиленный электродренаж, принцип работы которого ничем не отличается от работы катодной установки. Роль анодов для выпрямительной установки 5 выполняют рельсовые сети 2 и крепежная их арматура. При такой схеме защиты происходит усиленная коррозия рельсов и ее крепежной арматуры, а также значительно возрастают величина и зона распространения блуждающих токов в земле, что видно из следующего примера.  [c.50]

Несмотря на указанные недостатки усиленный дренаж получил достаточно широкое применение. Во-первых, организации, эксплуатирующие подземные сети, прежде всего заинтересованы в заш,ите своих коммуникаций, а предприятия, эксплуатирующие рельсовый транспорт, как правило, не имеют своих служб по борьбе с коррозией, а потому у них нет данных о скорости коррозионных повреждений рельсовой сети. Во-вторых, в проектах на строительство новой рельсовой сети часто отсутствует раздел Электрохимическая защита подземных сооружений . Поэтому, например, после пуска городского трамвая часто возникают коррозионные повреждения внутриквартальных трубопроводов, кабелей, опор и кроме того приходится завышать мощности внутриквартальных СКЗ для погашения наведенных на сооружениях блуждающих токов.  [c.51]

Устанавливая изолирующие элементы 8 через определенные участки на таком трубопроводе 7, уменьшают величину затекания в него блуждающего тока. Этот метод требует к себе особого внимания, т. к. на трубопроводе появляются анодные зоны в местах установки изолирующих элементов. Причем, анодные зоны часто меняются по длине и зависят от величины и положения нагрузки Rt,. Кроме того, нарушается целостность трубы, которая требует-дополнительного контроля, так как не исключена утечка транспортируемого продукта. В Башкирии этот метод применяется только на пересечениях трубопроводов с рельсовой сетью (см. рис. 4). Блуждающие токи (показаны стрелками), натекающие на газопровод и футляр, отводятся в рельсы через поляризованный токоотвод 5, зато натекание блуждающих токов на линейную часть газопровода, благодаря установленным изолирующим фланцам, снижается в сотни раз. Если заземлить близлежащий к рельсам трубопровод через определенные участки, то переходное его сопротивление резко уменьшится, а стекающие с рельсов в землю токи, подхватываемые таким трубопроводом, будут возвращаться в рельсы через другие заземленные участки трубопровода.  [c.52]


Промышленные испытания такого экрана на пути блуждающих токов проводились в г. Уфе вдоль рельсовой сети трамвая протяженностью 5 км. В качестве протяженного проводника была использована магистральная теплосеть (две нитки), расположенная вдоль рельсовой сети трамвая, а токоотводами служили повторные заземления нулевого провода для опор уличного освещения (рис. 11), где 1—рельсы, 2—теплосеть, 3—кабельная перемычка, 4— заземление опор, 5— вгн ильная перемычка (ВК-200).  [c.54]

Протяженными трубопроводами за счет снижения их входного, переходного сопротивлений относительно рельсовой сети приведена на рис. 11.  [c.61]

Таким образом, при строительстве новых рельсовых сетей трамвая экономически целесообразно установить вокруг источника блуждающих токов (рельсов) замкнутый электрический проводник, с помощью которого можно снизить зону, величину блуждающих токов в земле, в результате чего отпадет необходимость установки катодной защиты во многих районах города.  [c.61]

Дренажные установки, которые являются наиболее эффективным методом, отводят блуждающие токи из анодной зоны подземного сооружения в рельсовую сеть или на отрицательную шину тяговой подстанции (рис. 281). Прямой дренаж имеет двухсторон-  [c.396]

Исходными данными для расчёта и проектирования электрохимической защиты (в то.м числе - катодной) являются совмещенный пла1 проектируемых и существующих подземных сооружений, а также рельсовых сетей электрифицированного транспорта в масштабе 1 2000 или 1 5000. По проектируемым и рассчитываемым сооружениям, а также по уже существующим должны быть указаны длина и диаметр сооружений по существующим сооружениям - места установки электрохимической защиты по рельсовым сетям- точки подключения отрицательных кабелей и существующих дренажных установок данные о коррозионной активности фунтов и о наличии блуждающих токов, геолого -геофафический разрез для выбора конструкций анодных заземлителей площадь территории.  [c.7]

Назначение СКЗ - создание защитного отрицательного потенциала на сооружении в момент, когда участок рельсового пути приобретает потенциал более положительный, чем потенциал близкорасположенного сооружения, а потенциал последнего меньше минимального защитного. Усиленный дренаж имеет следующие преимущества по сравнению с другими видами дренажа более широкая регулировка загцитного потенциала, возможность снижения сечения дренажного кабеля. К достоинствам усиленных дренажей можно отнести и меньшее их влияние на соединения незашишенных сооружений по сравнепию с влиянием при защите сооружений катодными станциями. Вместе с тем усиленный дренаж применяют сравнительно редко из-за того, что положительный потенциал дополни гельного источника гока, подключенного к рельсам, мешает эффективной работе электрического дренажа и анодно поляризует металл рельсовой сети.  [c.29]

Так как величины потенциалов и токов могут изменяться (потенциалы -по величине и знаку, токи - по величине и направлению), измерения производят в течение длительного времени (за время прохождения по рельсовой сети 2-3 поездов (трамваев) в противоположных направлениях). При полном обследова-пии дренажной защрггы ведут суточные измерения с помощью самопишущих приборов, принимая за результат среднее значение измеряемых величин.  [c.30]

В верхнее строение пути — с песчаным балластом и деревянными шпалами — почти на половине сети были уложены рельсы типа IV-a (30,89 кг/м) и еще более легких типов, ограничивавшие возможности пропуска локомотивов с большими нагрузками на оси и движение поездов с большими скоростями. Количество тяжелых рельсов типов 1-а (43,57 кг/м) и П-а (38,32 кг/м), предусматривавшихся стандартом 1908 г., разработанным при участии таких выдающихся специалистов, как Н. П. Петров (1836— 1922), Н. А. Белелюбский (1845—1922) и Л. Ф. Николаи (1844—1908), к 1917 г. не превышало 12% общей длины рельсовых путей. Локомотивный парк состоял из относительно маломощных паровозов разнообразных серий. Наиболее мощные по тому времени и наиболее экономичные грузовые паровозы серии Э, начатые постройкой в 1912 г. по проекту В. И. Лопушин-ского (1856—1929) и строившиеся затем с некоторыми конструктивными изменениями на протяжении более сорока лет, ко второй половине 1917 г.. оставляли лишь около 4% общего числа локомотивов [17]. Столь же немногочисленными в составе локомотивного парка были лучшие тогда пассажирские паровозы серии С, начатые постройкой в 1911 г. по проекту Б. С. Малаховского и также длительное время затем в различных модификациях поступавшие на железные дороги СССР, и паровозы серии Л", строившиеся с 1915 г. по проекту В. И. Лопушинского, А. С. Раевского (1872—1924) и М. В. Гололобова.  [c.202]

Железные дороги — преобладающий вид механического транспорта в дореволюционной России, выполнявший свыше двух третей всех перевозок грузов и около девяти десятых всех пассажирских перевозок,— сосредоточивались преимущественно на территории Европейской части страны. Принятая на русских казенных и частных дорогах единая ширина рельсовой колеи способствовала введению на них еще в конце 80-х годов прошлого столетия — раньше, чем на дорогах других стран,—прогрессивной системы бесперегрузочной доставки грузов в прямом сообщении с обезличенным пользованием вагонами в пределах всей сети (без так называемого срочного возврата их на дороги-собственницы). Но тогда же предложенная идея формирования прямых (маршрутных) товарных поездов, определявшая значительное ускорение доставки. и сокращение. эксплуатационных расходов, не получила и не могла получить сколько-нибудь заметного распространения в условиях распыленности грузопотоков и различий в тяговых характеристиках паровозного парка, исключавших возможность унификации весовых норм поездных составов.  [c.309]

За прошедшие 50 лет резко возросли техническая вооруженность и совершенство методов эксплуатации железнодорожного транспорта — основного звена транспортной сети СССР. Коренные изменения произошли в составе локомотивного и вагонного парков, значительно усилено строение рельсового пути, намного улучшилось территориальное размещение железнодорожных магистралей во вновь осваиваемых экономических районах. В устройствах сигнализации, централизации и блокировки, в системах управления движением поездов все более широко используются совершенные средства автоматики и телемеханики. Длина электрифицированных линий к концу 1960 г. достигла 13,8 тыс. км, более чем в четыре раза превысив длину электрифицированных линий в Соединенных Штатах Америки, в 1965 г. составила 24,9 тыс. км, превысив суммарную длину электрифицированных участков железных дорог Англии, Франции и Италии, и к концу 1966 г. возросла до 27 тыс. км. По основным показателям эксплуатационной работы — грузо-и пассажирообороту, грузонапряженности, участковой скорости грузовых поездов, среднесуточному пробегу грузовых локомотивов и вагонов — желе зные дороги Советского Союза значительно опережают железные дороги США [16, 22, 23].  [c.322]

В конце 1920-х гг. стали известны публикации по катодной защите трубопроводов в Западной Европе. В Бельгии вначале в широких масштабах применяли дренажную защиту от токов утечки трамвая. С 1932 г. Л. де Брувер в Брюсселе защищал распределительные газовые сети, а с 1939 г. — днища газгольдеров током от постороннего источника [43]. В Германии в 1939 г. о способе катодной защиты от коррозии сообщалось следующее [44] В качестве защитных мероприятий при наличии блуждающих токов следует рекомендовать в первую очередь те, которые препятствуют стенанию токов с рельсов в грунт. Для защиты труб, целесообразно примерно на расстоянии до 200 м от пересечения трубопровода с рельсовыми путями прокладывать трубы с покрытиями, имеющими два слоя армирующих обмоток, и применять изолирующие муфты для повышения продольного сопротивления трубопровода. Электропроводное соединение труб с рельсами можно делать лишь с большой осторожностью, чтобы не получить противоположного эффекта . Как дальнейшее мероприятие предлагалось наложение тока, который делал бы трубу всегда катодом, т. е. способ катодной защиты .  [c.38]



Смотреть страницы где упоминается термин Сеть рельсовая : [c.27]    [c.77]    [c.78]    [c.207]    [c.210]    [c.248]    [c.309]    [c.46]    [c.47]    [c.50]    [c.52]    [c.53]    [c.69]    [c.71]    [c.71]   
Железные дороги Издание 4 (1991) -- [ c.96 ]



ПОИСК



Внутризаводский транспорт рельсовый - Взаимоотношения с сетью железных дорог

Причины утечки тяговых токов с рельсовой сети

Сети ЭВМ

Электрические параметры подземных сооружений и рельсовых сетей



© 2025 Mash-xxl.info Реклама на сайте