Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовая защита электрической

Газовая защита электрической дуги  [c.153]

ГАЗОВАЯ ЗАЩИТА ЭЛЕКТРИЧЕСКОЙ ДУГИ  [c.153]

Газо-электрические способы сварки (аргоно-дуговая и в среде углекислого газа) явились важным этапом развития дуговой сварки они позволили резко расширить области ее применения и способствовали прогрессу дуговой сварки. Использование газовой защиты сильно повысило возможности  [c.127]

Электрическая дуга обладает высокой интенсивностью нагрева. При сварке под флюсом интенсивность дуги и ее максимальная температура выше, чем при сварке открытой дугой (сварка с газовой защитой, сварка угольным электродом и т. д.).  [c.142]


Для уменьшения опасности окисления размеры сварочной ванны должны быть минимальными. Сварку металла толщиной до 10 мм обычно ведут так называемым левым способом, который снижает перегрев свариваемого металла. Скорость сварки должна соответствовать электрическому режиму и расходу инертного газа. Чрезмерный расход газа приводит к его турбулентному истечению и засасыванию в зону дуги воздуха, т. е. к нарушению газовой защиты. При малом истечении газа или чрезмерно большой скорости сварки защита зоны сварки будет недостаточной. Давление аргона в зависимости от расхода устанавливается в пределах 0,01-0,05 МПа. Аргон подают за 3-5 с до возбуждения дуги, а выключают через 5-7 с после обрыва дуги. Включение и выключение подачи аргона удобнее всего осуществлять электромагнитным клапаном, который устанавливают в цепи аппаратуры управления.  [c.115]

Разрядник газовый (ионный) — ионный электровакуумный прибор, действие которого основано на использовании резкого увеличения его проводимости вследствие возникновения самостоятельного дугового или тлеющего разряда- и предназначенный в основном для защиты элементов электрических цепей от перенапряжений или избыточной мощности или коммутации электрических цепей в тех случаях, когда необходимо производить замыкание или размыкание электрической цепи за столь короткое время, которое не могут обеспечить механические выключатели [3].  [c.152]

Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]


В настоящее время домовые газовые вводы отделяют от домовых электрических установок, заземленных по принципу уравнивания потенциалов [22], при помощи изолирующих участков или элементов [23]. Благодаря этому при сооружении новых сетей снабжения, например в новых городских микрорайонах, удается выполнить существенные предпосылки для обеспечения катодной защиты газовых распределительных сетей. При прокладке новых стальных труб с высококачественным покрытием требуется малый защитный ток. Это улучшает распределение тока и практически устраняет проблемы влияния катодной защиты на посторонние сооружения. В районах со старыми сетями некоторые организации газоснабжения с целью предотвращения опасности коррозии из-за образования гальванического элемента с заземленными домовыми электрическими установками уже начинают применять изолирующие элементы. Однако создание предпосылок для осуществимости катодной защиты таким способом связано с затратой больших средств. Тем не менее катодная защита старых и устаревших распределительных сетей в крупных городах ФРГ после 1965 г. применяется все более широко.  [c.260]

Давление [среды (использование для привода электрических переключателей Н 01 Н 35/24-35/40 схемы защиты от аварий, реагирующие на его изменение Н 02 Р 5/08) ударное, использование при сварке В 23 К 20/00 упаковка изделий из материалов в газовой среде под давлением В 65 В 31/04 устройства для понижения давления в водолазных костюмах В 63 С 11 /32 холодная сварка давлением В 23 К 20/00, F 16 В 11/00 электрические (выключатели, Н 01 Н 35/00-35/42 защитные схемы Н 02 Н 5/08) реагирующие на давление]  [c.70]

Коммунистическая партия и Советское государство повседневно уделяют большое внимание охране труда и здоровья трудящихся. В планах развития народного хозяйства предусматривается строительство новых и реконструкция действующих предприятий на базе внедрения передовой технологии и техники с целью повышения производительности труда, оздоровления условий и повышения безопасности труда. В седьмом разделе данной книги отрал<ены наиболее важные и основные вопросы охраны труда. Большое внимание уделено вопросам защиты рабочей среды от пылевидных и газовых выбросов, обладающих токсическими, радиационными и другими вредными свойствами. Рассмотрены современные способы защиты от поражения электрическим током. Приведены сведения из нормативных документов и правил по охране труда на теплоэнергетических установках, знание которых необходимо широкому кругу инженерно-технических работников предприятий, занимающихся проектированием. изготовлением и эксплуатацией оборудования.  [c.9]

Контактор защиты газовой турбины дает электрический импульс на выходное реле защиты парогенератора. Таким образом, системы предельных защит парогенератора и газовой турбины имеют прямую и обратную электрическую и гидравлическую связи, вызывающие полный останов ПГУ при срабатывании любой из защит.  [c.66]

Автоматическая защита котлов, работающих на газовом топливе, производительностью 2 г/ч и ei.mie осуществляется по целому ряду параметров, измерение которых производится первичными приборами, дающими команд >1 па электрическую схему защиты котла.  [c.30]

Сущность процесса дуговой сварки под флюсом заключается в применении непокрытой электродной проволоки и флюса для защиты дуги и сварочной ванны от воздуха (рис. 18.16). Электрическая дуга 1 горит между свариваемым изделием 9 и электродной проволокой 3 под слоем гранулированного сыпучего флюса 2, насыпаемого впереди дуги. В результате горения дуги расплавляются кромки основного металла, электродная проволока и часть флюса, примыкающая к зоне сварки. В зоне сварки образуется газовый пузырь 8, заполненный парами металла и газами. Сверху пузырь ограничен пленкой расплав-  [c.391]

Особенности основных узлов. Установка для механизированной сварки контактным плавлением включает механическую часть, предназначенную для выполнения сборочносварочных операций электрическую часть управления сборочно-сварочными операциями источник питания узлы аппаратуры газового обеспечения защиты зоны сварки. В состав механической части установки входят узлы, обеспечивающие сборку деталей под сварку и узел подвода тока к месту сварки. В большинстве случаев, на специализированных установках сварка производится по двухэлектродной схеме, когда оба полюса источника питания подключают к сварочным электродам. При такой схеме практически исключается значительное протекание тока по свариваемой детали, благодаря чему сводятся к минимуму дополнительные потери энергии и деформация деталей от теплового воздействия. Кроме того, в 2 раза сокращается машинное время сварки.  [c.386]


ЭВТ-ЮК И ЭВТ-ЮМ снижают окисляемость сплава ВТ-9 по сравнению с образцами без защиты (рис. 56). Увеличение массы образцов с покрытием при 1300° С за 5 ч составляет 0,02 кг/м , без покрытия в электрической печи — 0,4 кг/м, в газовой — 1,22 кг/м.  [c.200]

При газовой сварке для улучшения свариваемости и защиты от окружающей среды применяют различные флюсы, а при электрической дуговой сварке применяют качественные электроды, имеющие специальные покрытия, активно участвующие в сварочном процессе.  [c.341]

Установка труб для прокладывания кабелей. В помещениях, где кабели могут систематически подвергаться воздействию воды, масел, нефти и т. п., а также во взрывоопасных помещениях кабели прокладывают в газовых трубах. Кроме того, газовые трубы применяют для защиты кабелей от механических повреждений при проходе их через палубы, подводе к электрическим машинам и т. п. При установке труб (рис. 59) должны соблюдаться правила, приведенные в табл. 71.  [c.203]

Особенностью электросхемы является то, что вся аппаратура полуавтомата питается непосредственно от сварочной цепи и в аппаратуре управления нет высокого напряжения. В механизме подачи проволоки установлен газовый клапан, который совместно с редуктором-расходомером дроссельного типа обеспечивает надежную защиту места сварки газом в начальный период процесса сварки. Электрическая схема задержки отключения контактора дает возможность подавать газ после обрыва дуги всего за 0,8 с. При сварке в углекислом газе с малой силой тока этого достаточно. При сварке со средней силой тока, а также в аргоне эта продолжительность задержки уже мала. Поэтому газовый клапан необходимо подключать непосредственно к источнику питания через реле времени, обеспечивающее в течение почти 2 с задержку отключения газового клапана после обрыва дуги.  [c.207]

Пленка окислов разрушается флюсом при газовой сварке и электродуговой сварке угольным электродом (косвенной дугой или при прямой полярности). Электрическое разрушение пленки и защита расплавленного металла инертными газами свойственны электродуговой сварке вольфрамовым (неплавящимся) электродом, а также алюминиевым (плавящимся) электродом в среде аргона или гелия. При автоматической электродуговой сварке по слою флюса, ручной сварке обмазанными электродами и сварке угольным электродом на обратной полярности разрушение пленки и защита ванны являются комбинированными, т. е. при помощи флюса и действия дуги.  [c.85]

При сварке металлическим электродом тепло, необходимое для расплавления основного металла и электродного стержня, образуется при горении между ними электрической дуги. Электрическая дуга обладает высокой температурой — до 4000—6000° С. Расплавленные основной и электродный металл перемешиваются в сварочной ванне, образуя при затвердевании сварной шов. На металлический электрод наносят специальное покрытие, которое, расплавляясь, создает газовую и шлаковую защиту сварочной ванны от вредного влияния кислорода и азота воздуха.  [c.6]

Защиту закладных деталей от коррозии производят металлизацией на электрических металлизаторах типа ЭМ-9, ЭМ-ЗА или газовых типа МГИ-1-57, МГИ-2.  [c.63]

Источники, тепловой поток которых практически мало меняется в течение всего процесса сварки. Это электрические дуги с различной защитой, газовое пламя перемещающегося источника, источники при электрошлаковом процессе, электроннолучевой сварке, контактной роликовой сварке и некоторые другие.  [c.395]

Металлизация — процесс нанесения расплавленного материала на поверхность изделий сжатым воздухом или инертным газом с целью защиты изделий от коррозии. Металлизацию проводят и для восстановления размеров сработанных деталей машин. Металлизацию осуществляют аппаратами — металлизаторами, которые подразделяют на газовые и электрические. При использовании газовых металлизаторов материал покрытия плавится в конусе горения ацетиленокислородного пламени, при использовании электрических металлизаторов материал покрытия плавится за счет тепла при горении дуги. Расплавленный материал независимо от типа ме-таллизатора под действием струи воздуха или газа распыляется на частички размером 0,02—0,4 мм и наносится на поверхность изделия с большой скоростью (100— 200 м/с). Покрытие на изделии образуется в результате вклинивания и прилипания частиц материала в поры и неровности поверхности. Прочность сцепления покрытия с защищаемым изделием зависит от размера частиц, скорости их полета, деформации при ударе о поверхность. При металлизации получаемое покрытие имеет чешуйчатую структуру и высокую пористость, которую уменьшают увеличением толщины покрытия, шлифованием,, полированием или дополнительным нанесением лаков,, красок.  [c.118]

Сопло горелки полуавтомата А-537 также быстро покрывается брызгами. На торце и внутри сопла образуется сплошной металлический поясок из брызг, который ухудшает условия газовой защиты сварочной ванны. Большое количество брызг вызывает образование мостика между соплом и наконечником. Это нарушает электрическую изоляцию сопла, в результате чего оно обгорает при возможном прикосновении к свариваемому изделию. Во избежание выхода сопла из строя, его надо чаще очищать от брызг. Хромиро1вание по верхности сопла улучшает его стойкость против теплового воздействия дуги и отделяемость брызг. Для этой же цели могут применяться специальные смазки, например смазка ЦИАТИМ-221, разработанная в Центральном научно-исследовательском институте технологии и машиностроения. Некоторые предприятия применяют керамические сопла, которые не обгорают при сварке, так как они более стойки при высоких температурах, чем латунные, и не проводят электрический ток. Керамические сопла перед сваркой смазываются минеральным маслом, что уменьшает количество прилипших брызг.  [c.94]


Местная закрутка потока широко используется в энергетических установках и других технических устройствах для организации и интенсификации различных процессов. Закрутка является эффективным средством стабилизации пламени в камерах сгорания авиационных двигателей, используется для интенсификации тепло- и массообмена в каналах, защиты стенок камеры и стабилизации электрической дуги в плазмотронах [ 18] и т. д. Ёольшие перспективы имеет использование закрутки в вихревых МГД-генераторах, для регулирования тяги ракетных двигателей [ 30], удержания тяжелых атомов урана в камерах ядерных энергетических установок [35], в химической, нефтяной, газовой и других отраслях промышленности.  [c.7]

В энергетическом отношении атомно-водо-родпая сварка является в основном методом электрической сварки, при котором обратимые физико-химические процессы, протекающие в газовой атмосфере вольтовой дуги, способствуют наиболее эффективному развитию и использованию её тепловой мощности. Независимость источника тепла в сочетании с возможным широким диапазоном регулирования тепловой мощности пламени непосредственно в процессе сварки создает большую гибкость технологического процесса. Высокая температура атомно-водородного пламени позволяет применять его для сварки наиболее тугоплавких металлов. Восстановительные свойства молекулярного и особенно атомного водорода и его химическое взаимодействие с азотом являются условиями для наиболее эффективной защиты расплавленного металла от окисления и нитрирования.  [c.318]

Сжигание мазута в определенных условиях может сопровождаться появлением сажи, что хорошо видно по окраске дыма. Причиной сажеобразования бывают нехватка воздуха, грубые нарушения гидродинамики форсунок, повышенная вязкость топлива и т. п. Положение усугубляется при работе с малой нагрузкой, когда температуры топки недостаточны для дожигания мелкодисперсных частиц углерода. Особенно опасны в этом отношении пусковые периоды. Неналаженность оборудования сочетается здесь иногда с длительной (сутками) работой на холостом ходу, необходимой для наладки регулирования турбины, сушки генератора, настройки электрической защиты и т. п. Образуюш,аяся сажа накапливается по газоходам и особенно в узких пазах набивки регенеративного воздухоподогревателя. При дальнейшем повышении нагрузки, а следовательно, и температуры происходит самовозгорание сажи или зажигание ее от случайных очагов. В рекуперативных трубчатых подогревателях пожары, как правило, бывают после останова котла, так как при его работе дымовые газы бедны кислородом и процесс горения не развивается. В регенеративных воздухоподогревателях кислород поступает при прохождении набивки через воздушный канал, и раз начавшись, пожар быстро прогрессирует. После прогрева до 800—1 000° С в горение включается сталь, имеющая теплоту сгорания около 1 ООО ккал1кг. Температура быстро повышается, ротор деформируется и заклинивается, набивка размягчается, спекается в куски или в виде жидких струй вытекает в короб. Пожары развиваются с большой скоростью и наносят огромный ущерб. Первым признаком пожара является быстрый рост температуры уходящих газов и горячего воздуха. Для практических целей за сигнал тревоги надо принимать повышение температуры на 20—30° С выше обычной. По мере развития пожара начинается выбивание искр через периферийные уплотнения воздушного сектора и разогрев до видимого глазом каления газовых коробов.  [c.291]

Пылевидное топливо ( использование (в ка.мерах сгорания газовых турбин F 23 R 5/00 для ракетных двигательных установок F 02 К 9/70 устройства для сжигания F 23 (В 1/(28, 38), С 1/(06, 10, 12), D 1/00-1/06)) Пылемеры G 01 N 15/00 Пылеотделители В 01 D 46/(02-59) Пылеотсасывающие устройства на шлифовальных станках В 24 В 55/06 Пылесосы, встроенные в транспортные средства В 60 S 1/64 Пыль [защита от пыли подшипников электрическими и магнитными методами F 16 С 33/82 изготовление пыленепроницаемых покрытий В 21 D 53/80 осаждение при формовании изделий из глины и т. п. В 28 В 17/04 отделение при приготовлении формовочных смесей В 22 С 5/10 предотвращение (появления (или опрокидывании бочек при погрузочно-разгрузочных работах) В 65 G 69/18 распространения В 08 В 15/(00-04)) средства удаления пыли из воздухоочистите.тей ДВС F 02 М 35/08 удаление <из насосов и компрессоров необъемного вытеснения F 04 D 29/79 при обработке (древесины В 27 G 3/00 камня В 28 D 7/02 формовочных смесей В 22 С 5/10) при получении чугуна С 21 В 7/22 в промышленных печах F 27 В 1/18, 15/12 при работе инструментов ударного действия В 25 D 17/(14-18) из тары и упаковок В 65 В 55/24)] Пьезоэлектрические устройства (зажигания в ДВС F 02 Р 3/12 использование для измерения силы С 01 L 1/16)  [c.156]

В состав ее входит следующее основное оборудование а) газовая турбина в двухкориусном исиолнеиип (цилиндры высокого и низкого давления) б) одноцилиндровый осевой воздушный компрессор в) дополнительная камера сгорания г) газопровод, соединяющий парогенератор с газовой турбиной д) электрический генератор е) масляная система ж) система регулирования, защиты и контрольно-измерительные приборы.  [c.33]

Gas arbon ar welding — Газовая дуговая сварка угольным электродом. Разновидность процесса дуговой сварки угольным электродом, которое производит соединение металлов, нагревая их электрической дугой между единственным электродом и заготовкой. Защита производится газом или газовой смесью.  [c.968]

Для резки специальных сталей, цветных металлов и других материалов, не поддающихся огневой резке обычными способами, а в ряде случаев и для резки обычных углеродистых сталей применяют плазменную резку. Плазменная резка подразделяется на резку плазменной дугой и плазменной струей. При резке плазменной дугой (рис. 82,а) под действием высокой температуры сжатой дуги газ, проходя через дуговой разряд, сильно ионизируется, образуется струя плазмы, которая удаляет, расплавленный металл. Дуга возбуждается между разрезаемым металлом и неплавящимся вольфрамовым электродом, расположенным внутри головки резака. При резке плазменной струей разрезаемый металл не включается в электрическую цепь дуги, которая горит между концом вольфрамового электрода и внутренней стенкой охлаждаемого водой наконечника резака (рис. 82,6). Питание дуги производится от источника постоянного тока, минус подводится к вольфрамовому электроду, а плюс —к медной насадке, охлаждаемой водой. Дуга выдувается газовой смесью из внутренней полости мундштука с образованием струи плазмы, которая проплавляет разрезаемый металл. В качестве газов, используемых для защиты вольфрамового электрода, применяют аргон, азот, смеси аргона с азотом, водородом и воздухом, сжатый воздух. Плазменной дугой релсут металлы, трудно обрабатываемые другими способами, плазменной струей — тонкий металл.  [c.222]

После определения условий функционирования вольфрамового катода проведены эксперименты с целью определения условии нормальной работы сопла в смешанном газе. Исследовалась возможность его работы на одном смешанном газе без добавки других компонентов. Необходимо отметить, что при использовании чистого водорода для нормальной работы сопла требуется добавка аргона. Соотношение аргона и водорода в смеси составляет 35—40% аргона и 60—65% водорода, т. е- примерно такое же, как соотношение азота и водорода в смешанном газе. Однако атомный вес азота значительно меньше, а теплопроводность больше, чем аргона, Между тем защитное действие тяжелых компонентов газа объясняется так называемым эффектом термодиффузии, который заключается в следующем. В результате высокого градиента температур, доходящего до 10000 градусов на 1 лш, происходит разделение компонентов газовой смеси более тяжелые компоненты концентрируются у холодных стенок сопла, более легжие — вблизи оси дугового столЬа. Это значит, что в случае аргоноводородной смеси аргон, а в случае азотноводородной смеси азот будет концентрироваться вблизи внутренней поверхности сопла. Но так как теплопроводность аргона и азота во много раз ниже теплопроводности водорода, то благодаря перераспределению компонентов газовой смеси у внутренней стенки сопла образуется холодный слой газа. Этот слой газа в результате охлаждения стенок сопла имеет достаточно низкую электро-и теплопроводность, вследствие чего достигается электрическая и тепловая изоляция стенок сопла от столба дуги. Поэтому небольшая добавка аргона обеспечивает надежную тепловую защиту сопла.  [c.16]


Чаще всего такие покрытия применяют в качестве тепловых и электрических барьеров, для защиты от износа и эрозии, с целью предохранения поверхности металлов от взаимодействия с газовыми и жидкими агрессивными средами, особенно при высоких температурах. Нанесение плотного покрытия на основе окиси алюминия на детали насосов (валы, сальники, втулки, крыльчатки) обеспечивает их твердость, химическую стойкость, низкий коэффициент трения, стойкость против термического воздействия. Напыление окиси циркония на матрицы для протяжки молибдена повыщает срок их службы в 5—10 раз. Плазменные покрытия из окиси алюминия и циркония увеличивают стойкость кокильных форм, изложниц, тиглей, литейных ковщей. Магнезитохромитовые сводовые кирпичи с плазменным покрытием из 2гОз толщиной 0,1—0,2 мм выдержали без разрушения 100 плавок, в то время как кирпичи без покрытия износились на 100 мм. С успехом применены плазменные покрытия для увеличения срока службы фурм доменных печей и труб для выдувки при горячем ремонте мартеновских печей. Поданным работы [121], керамические и керметовые покрытия применяют для защиты ответственных деталей воздушно-реактивных двигателей и ракет.  [c.343]

Особенности и преимущества ионного азотирования деталей машин. Ионное азотирование обеспечивает получение диффузионных слоев высокого качества на сталях различных классов и назначений, а также на чугунах и цветных сплавах приводит к повышению производительности труда вследствие сокращения производственного цикла способствует безопасности процесса и защите окружающей среды в результате применения маловодородной или азотной газовой среды, позволяет исключить косвенный нагрев в печах нагрев электронагревателей, футеровки, муфеля и т. д. благодаря прямому преобразованию электрической энергии в тепловую устраняет трудоемкие операции по нанесению и удалению защитных покрытий вследствие применения простой (экранной) защиты позволяет азотировать окончательно обработанные поверхности деталей, так как изменения размеров деталей после ионного азотирования незначительны и укладываются в поле допуска расширяет организационно-технологические возможности процесса (автоматизация управления и контроля скоростной нагрев и охлаждение деталей, обработка крупногабаритных и мелких деталей любой конфигурации с отверстиями малого диаметра, экономный расход рабочего газа 25 л/ч для камеры диаметром 750 и высотой 3000 мм, окончательная 132  [c.132]

С целью получения однородной мелкозернистой структуры шатуны после растяжки подвергают термической обработке — закалке и отпуску. Для этого подготовленные комплекты шатунов укладывают в стальной противень, засыпают отработанным твердым карбюризатором на 20—30 мм выше деталей с целью защиты металла от обезуглераживания и образования окалины при нагреве. Противень с деталями загружают в газовую электрическую камерную печь типа СНЗ-2, 0. 4, 0.1, 4/12, нагревают до 890—900 °С, выдерживают 15—20 мин и закаливают в масле.  [c.144]

Эти характеристики позволяют использовать капиллярнопористые тела, как было указано выше, в качестве материала для различного рода теплообменников в космосе (конденсаторы, испарители, сублиматоры) для защиты от внешних тепловых потоков, для теплосброса в вакуум (термостатирование емкостей с жидкостями, переохлаждение жидкостей, термостатирование различных аппаратов, подверженных нагреву солнечным излучением), для перекачки жидкости, для преобразования тепловой энергии в механическую или электрическую с высоким к. п. д., для создания специальных теплопроводов типа тепловых трубок, обладающих теплопроводностью, в сотни раз превышающей теплопроводность меди. Наконец, использование пористых материалов в качестве сопл двигателей позволяет в вакууме получить газовые струи очень однородной структуры с хорошо развитым изоэнтропическим ядром. Наиболее эффективной теплоизоляцией в вакууме является пористая теплоизоляция.  [c.444]


Смотреть страницы где упоминается термин Газовая защита электрической : [c.400]    [c.453]    [c.160]    [c.256]    [c.377]    [c.354]    [c.172]    [c.106]    [c.209]    [c.162]   
Справочник рабочего-сварщика (1960) -- [ c.0 ]



ПОИСК



Защита газовая

Электрическая защита



© 2025 Mash-xxl.info Реклама на сайте