Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород теплопроводность

В выхлопных газах двигателя могут содержаться следующие газы окись углерода, кислород, азот, углекислый газ и водород. Теплопроводность окиси углерода, кислорода и азота приблизительно равна теплопроводности воздуха теплопроводность углекислого газа — в два раза меньше теплопроводность водорода — в шесть раз больше теплопроводности воздуха.  [c.254]

Медь широко используется, так как помимо высокой коррозионной стойкости она легко поддается механической обработке, обладает очень высокой электро- и теплопроводностью, легко паяется мягкими и твердыми припоями. В ряду напряжений она положительна по отношению к водороду и термодинамически устойчива к коррозии в воде и неокислительных кислотах, свободных от растворенного кислорода. В окислительных кислотах  [c.326]


Рис. 2.59. Теплопроводность водорода, гелия, аргона и азота в зависимости от температуры Рис. 2.59. Теплопроводность водорода, гелия, аргона и азота в зависимости от температуры
Для защиты катода и сопла от разрушения и перегрева наилучшим газом считается аргон, так как он химически инертен и имеет малую теплопроводность (рис. 2.59). Однако аргон малоэффективен для преобразования электрической энергии в тепловую. Во-первых, напряженность поля дугового столба в аргоне меньше, чем в водороде, азоте, гелии д, ж 0,8 В/мм яа  [c.104]

Для водорода при низких температурах Стар [228] предложил принять. т = 0,75, а у=. В этом случае коэффициент теплоотдачи а перестает зависеть от теплопроводности газа >. [см. (46.1) — (46.5)], а формула для а сводится к следующей  [c.108]

Метод простой нормировки основан на предположении, что вещества, взятые в одинаковом количестве, независимо от их строения дают одну и ту же площадь пика. Это приблизительно выполняется, если вещества химически сходны, а в качестве газа-носителя берут газ, теплопроводность которого приблизительно на порядок отличается от теплопроводности анализируемых веществ. Такими газами обычно являются водород и гелий. Для количе-  [c.305]

Из табл. III. 1. видно, что теплопроводность некоторых металлов с повышением температуры убывает. Для воздуха, водорода и других газов, наоборот, теплопроводность с повышением температуры растет.  [c.77]

Коэффициент теплопроводности газов изменяется в пределах 0,006—0,1 Вт/(м-К). Исключение составляют водород и гелий, коэффициент теплопроводности которых значительно выше, чем остальных газов (рис. 14.4).  [c.204]

Рис. 14.4. Зависимость коэффициента теплопроводности водорода и гелия от температуры Рис. 14.4. Зависимость <a href="/info/85673">коэффициента теплопроводности водорода</a> и гелия от температуры
Наименьшим коэффициентом теплопроводности обладают газы. Коэффициент теплопроводности их возрастает с повышением тем. пературы и составляет 0,006...0,6 Вт/(м К). Заметим, что верхнее значение относится к гелию и водороду, коэффициент теплопроводности которых в 5...10 раз больше, чем других газов.  [c.163]


В газах носителями тепловой энергии являются хаотически движущиеся молекулы. За счет соударения и перемешивания молекул энергия из зон с более высокой температурой, где молекулы движутся быстрее, передается в зоны с более низкой температурой. Согласно молекулярно-кинетической теории коэффициент теплопроводности в газах зависит в основном от скорости движения молекул, которая в свою очередь возрастает с увеличением температуры и уменьшением массы молекул. Наибольшей теплопроводностью обладает самый легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода А 0,2 Вт/(м К). У более тяжелых газов теплопроводность меньше — у диоксида углерода А 0,02 Вт/(мХ ХК), у воздуха А 0,025 Вт/(м-К).  [c.74]

Значительный интерес представляет водород, имеющий весьма высокий коэффициент теплопроводности, несмотря на его меньшую электрическую прочность по сравнению с воздухом. Водород применяется в качестве электроизоляционной и охлаждающей среды в крупных турбогенераторах.  [c.193]

Сравнительные свойства воздуха и других газов указаны в табл. 3.1. Из данных этой таблицы видно, что плотность Og в 1,52 раза больше, чем у воздуха. У водорода она составляет 0,07 от плотности воздуха, но по теплопроводности и теплоемкости водород соответственно имеет в 6,69 и в 14,35 раз более высокие значения, чем воздух.  [c.50]

Среди газов резко отличаются своим высоким коэффициентом теплопроводности гелий и водород. Коэффициент теплопроводности у них в 5—10 раз больше, чем у других газов [Л. 194]. Это наглядно видно на рис. 1-6. Молекулы гелия и водорода обладают малой массой, а следовательно, имеют большую среднюю скорость перемещения, чем и объясняется их высокий коэффициент теплопроводности.  [c.14]

Рис. 1-6. Коэффициенты теплопроводности гелия и водорода. Рис. 1-6. <a href="/info/85804">Коэффициенты теплопроводности гелия</a> и водорода.
Измерение содержания водорода производится по различию теплопроводности платиновой нити в атмосфере водорода и кислорода в эталонной ячейке [6].  [c.21]

Одновременно следовало обеспечить интенсивный отвод тепла от активных частей турбогенератора. В качестве охлаждающей среды был применен водород, имеющий удельный вес в 14 раз меньше воздуха и в 7 раз большую теплопроводность. Первый турбогенератор мощностью 100 тыс. кет со скоростью вращения 3000 об/мин и поверхностным водородным охлаждением обмоток статора был изготовлен заводом Электросила в 1946 г. для Ново-Московской ГРЭС, а в 1952 г. был изготов.чен такой же турбогенератор мощностью 150 тыс. кет.  [c.100]

В качестве индикаторных газов используют газовые смеси или чистые газы (водород, гелий, фреон, углекислый газ, неон, метан, этан, пропан, бутан и др.), теплопроводность которых значительно отличается от теплопроводности воздуха. Возможность работы с таким недефицитным газом, как углекислый, является особенно важным преимуществом при испытании больших объемов.  [c.124]

Методика испытаний при температурах ниже —196° С значительно сложнее, поэтому к аппаратуре для испытания при очень низких температурах предъявляются особые требования. Во-первых, поскольку при сверхнизких температурах теплоемкость всех материалов ничтожна, а скрытая теплота парообразования жидких водорода и гелия достаточно мала, то тепловое равновесие в ванне для испытаний устанавливается очень быстро. Поэтому детали установки, находящиеся в контакте с хладагентом, необходимо изготавливать из материалов с наименьшей теплопроводностью, обеспечивающих постоянство температуры в процессе проведения эксперимента. Во-вторых, в силу дефицитности жидкого гелия и водорода нужно принимать специальные меры, уменьшающие расход охладителя, а также следует ограничивать рабочий объем ванн.  [c.188]

По сравнению с углеводородным топливом водород может обеспечить более высокие удельные скорости нагрева объема. Это позволит существенно упростить камеру сгорания и, что важно для образования NOi, уменьшить время пребывания водорода в камере. Более высокая скорость горения обусловлена большей диффузионной подвижностью и теплопроводностью водорода.  [c.87]


С повышением температуры теилоироводиость газов возрастает. Среди них резко выделяются гелий и водород, теплопроводность которых в 5—10 раз больше всле.дствие малой молекулярной массы, а следовательно, большей скорости диффузии молекул.  [c.66]

Снижение температурного градиента в пластинах возможно прн применении для пайки нейтральных или активных газовых сред с большей теплопроводностью, чем аргон, напрнмер гелия или водорода. Теплопроводность гелня, водорода, и аргона по Отношению к теплопроводности воздуха соответственно составляют 6,22 7,01 и 0,74.  [c.235]

В металлах теплопроводность обеспечивается главным образом за счет теплового движения электронов ( электронного газа ), которые более чем в 3000 раз легче молекул самого легкого газа — водорода. Соответственно v теплопроводность металлов много пыше, чем газов.  [c.71]

Для сварки неплавящимся электродом (W, С и др.) состав плазмы столба определяется в основном защитными газами. Например, аргон, для которого и= 15,7 В, а Qe = 2,5 10 м , снижает напряженность поля Е и увеличивает плотность тока. Наоборот, гелий, водород (соответственно Q = 5- 10 и 130Х X 10 м ) увеличивают Е и снижают /. Следует учесть также, что гелий и водород имеют высокую теплопроводность, способствующую эосту напряженности Е в столбе дуги.  [c.60]

Гелий и водород при Т = 10 000 К обладают большой теплопроводностью (см. рис. 2.59), всего в 2 раза меньшей, чем у меди, и лучше других газов преобразуют энергию дуги в теплоту. В случае применения их в чистом виде происходит быстрый нагрев и разрушение сопла, поэтому указанные газы применяют в смеси с аргоном. Например, добавки к аргому водорода в пропорции по объему 2 1 позволяют повысить тепловую мощность  [c.104]

Экспансионный ожижитель Симона. Существуют три различных типа гелиевых ожижителей, а именно непрерывного действия с предварительным водородным охлаждением, непрерывного действия с охлаждением детандером и хорошо известный процесс ожижения без использования непрерывного потока. Первые два способа ожижения кратко описаны выше. Третий способ используется в так называемом экспансионном ожижителе Симона [2], который показан схематически на фиг. 7. В этом ожижителе газообразный гелий, охлажденный и змеевике S, нагнетается в металлическую камеру В, охлаждаемую жидким или твердым водородом G. Чтобы обеспечить теплопроводность пространства Z, последнее заполняется гелием при низком давлении. Теило, поглощенное водородной ванной, определяется уменьшением внутренней энергии гелия после входа в камеру и работой сжатия. Работа сжатия равна 2 mpv, где т—масса очень малого количества входящего "аза, а v—его удельный объем. Если весь газ входит при одинаковой температуре Т,, то общая работа потока равна NRT , где lY—число молей газа, который входит в камеру, а В—газовая постоянная. Охлаждение с помощью водорода, требующееся для поглощения тепла, производимого работой сжатия, может оказаться больше того, которое необходимо для изменения внутренней энергии гелия. Это видно из сравнения величины двух произведений В1 и С ,ср,(2 ,—Tj), где Гд—конечная температура.  [c.132]

Измерения теплопроводности чистых металлов при низких температурах показали, что иногда соотношение Видемана—Франца не удовлетворяется. В конце 20-х и начале 30-х годов в нескольких лабораториях были проведены такие измерения вплоть до температур жидкого водорода. Особенно важные данные получены в Лейденской лаборатории и группой Грюнейзена. Вследствие того, что обычно теплопроводность имеет максимум при температуре 10—20°К, а при более низкой температуре она определяется дефектами кристаллической структуры, упомянутые измерения дали почти столько же сведений о тепловом сопротивлении металлов, сколько и последующие измерения, продолженные до более низких температур.  [c.224]

В лейденских измерениях [28—30], выполненных при температурах жидкого водорода, такой экспоненциальной зависимости найдено не было, ибо в изучавшихся веществах тепловое сопротивление, вызванное процессами переброса, перекрывалось тепловым сонротивленпем, обусловленным дефектами кристаллической структуры. Прн гелиевых температурах теплопроводность падала с уменьшением температуры и оказалась зависящей от размера образца вследствие рассеяния фононов его внешней поверхностью.  [c.225]

Теплопроводность кристаллов (экспериментальные данные) ). Эйкеп [25] измерил теплопроводность нескольких твердых диэлектриков до температур жидкого кислорода, а в нескольких случаях до температур жидкого водорода. Он нашел, что теплопроводность х кристаллов в обш ем случае, в согласии с формулой (9.7), меняется как и что теплопроводность больше для тех кристаллов, у которых дебаевская температура в больше.  [c.249]

Де-Хааз, Герритзеп и Капелл [107] измерили теплопроводность висмута до температуры жидкого водорода, а Шалыт [110]—до температуры жидкого гелия. Результаты последнего представлены на фиг. 12. При температуре жидкого водорода у. составляет всего лишь несколько процентов  [c.291]

Де-Хааз и Нобель [108, 109] безуспешно пытались выделить для монокристалла вольфрама при температуре жидкого водорода они измеряли электро- и теплопроводности в магнитном поле и экстраполировали их значения в область сильных полей (ибо изменяется в сильных  [c.292]

G г ii п е i S е п Е., А d е и s t е d t Н., Ann. d. Phys. 29, 597 (1937) 31, 714 (1938) Влияние поперечного магнитного поля на теплопроводность некоторых чистых металлов при температуре жидкого водорода.  [c.311]

В катарометрическом (газоаналитическом) методе пробным газом является водород или гелий, а индикатором — электронная установка типа 1TI-7102, в которой наличие течи фиксируется специальными датчиками по изменению теплопроводности индикаторной среды.  [c.208]


При использовнии газа-носителя с высокой теплопроводностью (водорода, гелия) чувствительность детектора резко повышается.  [c.302]

Рис. 45.62. Гравитационная неустойчивость во Вселенной. По оси ординат отложено время от начала расширения Вселенной, по оси абсцисс — масса возмущения (р 1. возм). Отмечены момент f , когда сравниваются плотности вещества и излучения, и момент рекомбинации водорода Л1дж—джннсовская масса (минимальное значение массы, при которой начинается гравитационная неустойчивость) —максимальная масса возмущений, затухших к данному моменту времени под действием лучистой вязкости и теплопроводности 3=1 f85] Рис. 45.62. Гравитационная неустойчивость во Вселенной. По оси ординат отложено время от начала расширения Вселенной, по оси абсцисс — масса возмущения (р 1. возм). Отмечены момент f , когда сравниваются <a href="/info/406016">плотности вещества</a> и излучения, и момент <a href="/info/48063">рекомбинации водорода</a> Л1дж—джннсовская масса (минимальное значение массы, при которой начинается гравитационная неустойчивость) —максимальная масса возмущений, затухших к данному моменту времени под действием лучистой вязкости и теплопроводности 3=1 f85]
Значительный интерес для электротехники представляет водород. Это очень легкий газ, обладающий весьма благоприятными свойствами для использования его в качестве охлаждающей среды вместо воздуха (водород характеризуется высокой теплопроводностью и удельной теплоемкостью). При использовании водорода охлаждение вращающихся электрических машин существенно улучшается. Кроме того, при замене воздуха водородом заметно снижаются потери мощности на трение ротора машины о саз и на вентиляцию, так как эти потери приблизительно пропорциональны плотности газа. Ввиду отсутствия окисляющего действия кислорода воздуха замедляется старение органической изоляции обмоток машины и устраняется опасность пожара при коротком замьпсании внутри машины. Наконец, в атмосфере водорода улучшаются условия работы щеток. Так как водородное охлаждение позволяет повысить мощность машины и ее КПД, крупные турбогенераторы и синхронные компенсаторы выполняются с водородньпч охлаждением (еще более эффективное охлаждение достигается циркуляцией жидкости внутри полых проводников обмоток статора и даже - что, конечно, технически сложнее - ротора). Применение циркуляционного водородного охлаждения требует герметизации машины (подшипники уплотняются при помощи масляных затворов). Чтобы избежать попадания внутрь машины B03ziyxa (водород при содержании его в возд тсе от 4 до 74% по объему образует взрывчатую смесь - гремучий газ), внутри машины поддерживается некоторое избыточное давление, сверх атмосферного постепенная утечка водорода восполняется подачей газа из баллонов. При прочих равных условиях электрическая прочность водорода примерно на 40 %, а угольного ангидрида СОт - на 10% ниже, чем электрическая прочность воздуха. Для заполнения  [c.128]

В плоском приборе была исследована теплопроводность воздуха, кислорода, аргона, водорода. Опыть проводились при температурах порядка 20°С. Конвективный перенос тепла в слое газа был пренебрежимо мал. Лучистый теплообмен через слой газа между сердечником и крышками прибора также характеризовался малым коэффициентом теплоотдачи, равным 0,10— 0,35 вт1м -град.  [c.116]

Принцип работы водородомеров основан на том, что теплопроводность водорода значительно выше теплопроводности воздуха или кислорода, поэтому присутствие водорода, в этих газах заметно превышает их теплопроводность изменение теплопроводности измеряется с помощью дифференциального детектора термокондуктометрического типа — катарометра.  [c.21]

Обнаружено, что при облучении из бетона выделяется около 4—6 см газа на 1 2 материала в день в зависимости от состава бетона [68, 69, 86, 150]. Основными составляющими выделяющегося газа являются водород (75%), двуокись углерода и окись углерода. Состав выделяемого газа также в большой степени зависит от состава бетона. Выделение газообразного хлора отмечено в бетоне с добавками оксихлорида магния. Но способность удерживать газы у бетона с оксихлоридом магния больше, чем у борсодержащего бетона [74]. Уменьшение теплопроводности бетона брукхейвенского реактора составило 20% после облучения потоком тепловых нейтронов 1,3-10 нейтрон см [164]. Уменьшение теплопроводности портланд-цемента составило 10% после облучения интегральным потоком 1,2-10 нейтрон1см [186].  [c.207]

Легчайший из всех известных веществ (в 14,4 раза легче воздуха) водород является наиболее теплотворной частью топлива при сгорании 1 кг водорода выделяется около 125 600 кДж энергии. Водород — рекордсмен среди газов по величине теплопроводности при 0°С и 0,1 МПа она составляет 0,174 Вт/(м-К) (теплопроводность воздуха, например, в 7,25 раза меньше).  [c.47]

Так гласит теория (правда, простейшая), а что же опыт Экспериментируя с водородом, воздухом и углекислым газом, И. Вике и Ф. Феттинг, например, получили соотношение коэффициентов теплообмена 3 1 0,75. Для упомянутых газов значения X относятся, как 7 1 0,62, а величины — как 3,22 1 0,75, т. е. коэффициенты теплообмена примерно пропорциональны теплопроводности газа в степени 0,6. Такие же или близкие к ним результаты были получены многими исследователями.  [c.147]


Смотреть страницы где упоминается термин Водород теплопроводность : [c.199]    [c.345]    [c.71]    [c.255]    [c.310]    [c.275]    [c.32]    [c.93]    [c.207]    [c.86]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.41 , c.42 , c.679 , c.681 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.487 ]



ПОИСК



Водород

Водород Коэффициент теплопроводности

Водород теплопроводность газа

Водород, вязкость теплопроводность

Тимрот Д. Л., Уманский А. С., Королева В. В. Теплопроводность гелия, водорода и аргона при высоких температурах



© 2025 Mash-xxl.info Реклама на сайте