Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение вариационное Кастильяно

Уравнение вариационное Кастильяно 42  [c.392]

Вариационное уравнение Кастильяно, связанное с действительным напряженным состоянием (удовлетворяются уравнения неразрывности деформаций), имеет вид  [c.10]

Формулировка вариационного принципа зависит от того, какими величинами (функциями) характеризуется состояние деформированного тела. В принципе Лагранжа такими функциями служат перемещения li, а в принципе Кастильяно — напряжения ст. Именно эти принимаемые за основные функции подлежат варьированию (бесконечно малым изменениям) для того, чтобы получить вариационное уравнение. Все прочие функции считаются связанными с основными соответствующими зависимостями, приведенными в гл. 2.  [c.67]


Для вывода вариационного принципа Кастильяно, рассмотрим воображаемое напряженное состояние бац такое, что j = О, = О, xi е 5т. Значения, которые принимают величины 8ац на части поверхности 5ц, могут быть произвольны. Поскольку состояние 5ац удовлетворяет условиям равновесия, составим уравнения равновесия в форме Лагранжа, приняв за виртуальные перемещения истинные перемещения щ ж соответствующие  [c.259]

Вариационный принцип Кастильяно. Пусть и и е относятся к одному состоянию тела, т. е. известно решение (15.19) уравнений совместности деформаций Сен-Венана или, иначе, удовлетворены уравнения Коши, а вместо х, о и pv рассматриваются их вариации бх, бо и 6pv, которые считаем возможными, т. е. удовлетворяющими дифференциальными уравнениями равновесия в области и уравнениям равновесия элементарного тетраэдра на границе тела  [c.520]

Вариационное. уравнение. Для случая двухслойного цилиндра вариационную формулу Кастильяно можно принять в виде  [c.12]

Рассматривая чисто упругую деформацию, мы придем таким образом к вариационному уравнению Кастильяно, которое в данном случае получит следующий вид  [c.19]

Вариационная формула Кастильяно. По аналогии с понятием возможных перемещений вводится понятие статически возможных напряжений 5су, при которых не происходит нарушения уравнений равновесия.  [c.50]

Зависимость (1.4.50) часто называют вариационным уравнением Кастильяно.  [c.50]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]


Показано несоответствие некоторых общих решений уравнений равновесия вариационному принципу Кастильяно и выводимым из него определенным видам уравнений неразрывности. В этом плане следует подчеркнуть целесообразность проверки новых и известных старых дифференциальных формулировок на соответствие вариационным принципам.  [c.10]

Действительно, вариационное уравнение для функционала Кастильяно 5к1(ф) (табл. 3.2) имеет вид  [c.61]

Равенство (1.8) содержит шесть уравнений. При использовании общих решений (13) и (14), в которых участвуют по три компонента тензора функций напрян<ений, т. е. по три варьируемых функции, вариационное уравнение Кастильяно принимает вид  [c.61]

Наличие аналогии между геометрическими и статическими уравнениями теории оболочек наводит на мысль о существовании аналогии между статическим вариационным принципом Лагранжа, в формулировке которого участвуют геометрические переменные и, е, (г, и геометрическим принципом Кастильяно со статическими переменными t ), М, Т. И действительно, такая аналогия имеет место между функционалами Лагранжа и Кастильяно, записанными в форме табл. 4.1 и  [c.133]

И Т. Д. ПО схеме (7.1) с учетом (1.6), (1.12), (1.23) и (1.29). При этом аналогия в вариационной форме имеет место между квадратичными частями двумерных интегралов, подобно тому как аналогия в дифференциальной форме существует между однородными частями дифференциальных уравнений. Входящие в функционалы Лагранжа и Кастильяно контурные интегралы оказываются полностью аналогичными, если между статическими и геометрическими граничными величинами установить соответствие  [c.134]

Другой пример дают задачи расчета многосвязных оболочек, разобранные в гл. 5. Функционал Кастильяно для многосвязной оболочки при статических граничных условиях имеет в качестве одного из условий стационарности уравнения неразрывности контура отверстия-, его аналог — функционал Лагранжа — имеет в качестве условий стационарности уравнения равновесия контура отверстия, но для задачи с деформационными граничными условиями. Этот пример показывает, что вариационная форма статико-геометрической аналогии позволяет глубже увидеть связь уравнений и найти ее между соотношениями, которые раньше казались несвязанными.  [c.135]

Вариационные уравнения, соответствующие функционалам, приведенным в гл. 3 и 4, можно вывести обычным путем по правилам вариационного исчисления. Левые части их имеют энергетическую структуру и выражают работу обобщенных сил на соответствующих возможных обобщенных перемещениях (для вариационного уравнения Лагранжа) или обобщенных перемещений (деформаций) на возможных обобщенных силах (для уравнения Кастильяно), или их комбинаций в полных и различных смешанных формах. При этом возможными называются обобщенные перемещения (силы), которые удовлетворяют дополнительным условиям, наложенным на них, следующим из дополнительных условий данного функцио-  [c.142]

В этом смысле вариационному уравнению Лагранжа соответствует принцип возможных перемещений, уравнению Кастильяно — принцип возможных напряженных состояний, а полным и другим частным— различные общие и частные вариационные принципы (см. гл. 1, 2).  [c.143]

В 1944 г. вариант теории пластин, в которой учитываются поперечные сдвиги, был предложен Э. Рейсснером [25]. Задав линейный закон изменения напряжений а, Оу, Хху по толщине пластины, получив затем из уравнений равновесия квадратичный закон изменения напряжений т г и Xyz и кубический закон для напряжений Сг, он выводит соотношения обобщенного закона Гука из вариационного принципа Кастилиано. В 1945 г. Э. Рейсснер [26] получил разрешающие уравнения уравнение для прогиба и для функции t]5, которая входит в формулы для перерезывающих сил. Через год  [c.191]

Соотношения обобщенного закона Гука и граничные условия получим из вариационного уравнения Кастилиано. Если считать выполненными соотношения закона Гука (4.17), вариационное уравнение Кастилиано для пластины как трехмерного тела будет иметь вид  [c.193]


Отметим, что из вариационного принципа Кастилиано не вытекает закон Гука (4.17), если задан какой-то определенный закон изменения напряжений по толщине. Для этого нужно дать полный произвол.в изменении напряжений, чего нет в рассматриваемой, теории. Однако с другой стороны, выполнение уравнений (4.17) нё противоречит уравнению Кастилиано. Оно лишь будет иметь упрощенный вид (4.21). .1 ..  [c.193]

Вариационное уравнение Кастильяно  [c.39]

Располагая вариационными уравнениями Лагранжа и Кастильяно, можем теперь дать вариационную постановку задачи теории упругости если задача решается в п е р е м е -щ е н и я X, то требуется найти такие перемещения и, которые непрерывны внутри тела, удовлетворяют геометрическим граничным условиям и минимизируют полную потенциальную энергию системы V если задача решается в напряже-н и я X, то требуется найти такие напряжения а, которые удовлетворяют уравнениям равновесия и статическим граничным условиям и минимизируют полную дополнительную энергию системы У,  [c.43]

С точки зрения приведенной теоремы сформулированная выше экстремальная задача (У.б) соответствует наиболее общему вариационному принципу теории трансверсально-изотропных оболочек. Поэтому из последнего как частные случаи должны следовать все другие вариационные уравнения. В частности, на базе (У.5) и (У.б) могут быть сформулированы классические вариационные принципы Лагранжа и Кастилиано.  [c.82]

Естественно, что каждый из полученных таким образом вариационных принципов позволяет удовлетворить вариационным методом тем уравнениям теории оболочек, которые не были присоединены к (У.5) и (У.б) в качестве предварительных. Для принципа Лагранжа такими уравнениями являются условия равновесия и статические граничные условия, а для принципа Кастилиано — соотношения неразрывности деформаций (1.35). При использовании этих принципов перечисленные уравнения выполняются как бы автоматически и нет надобности удовлетворять им заранее.  [c.91]

Уравнение (2.418) обобщает известную вариационную формулу Кастилиано [23] роль плотности энергии деформации в формуле (2.4.8) играет плотность термодинамического потенциала Гиббса, взятая со знаком минус [62]. Если при вариации напряженного состояния выполняется условие о неизменяемости внешних поверхностных сил (5/ =0), то  [c.45]

При ЭТИХ условиях имеет место вариационное уравнение Кастилиано  [c.323]

Таким образом, мы установили, что шесть тождественных соотношений Сен-Венана являются следствием вариационного уравнения Кастилиано (11.70). Это и должно было быть, так как статически возможное напряжённое состояние в теле отличается от того напряжённого состояния, которое имеет место при действительном равновесии, именно тем, кто при этом  [c.326]

Приложение вариационного уравнения Кастилиано к плоской задаче при заданных на контуре сечения  [c.454]

Так как контурные усилия Х йз, У,йз в данном случае не подвергаются вариации, то имеет место вариационное уравнение Кастилиано (11.66)  [c.454]

ПРИЛОЖЕНИЕ ВАРИАЦИОННОГО УРАВНЕНИЯ КАСТИЛИАНО 455  [c.455]

Такой метод приближенного решения можно считать вариационным методом Кастильяно. При решении уравнений (2.27) пользуются также методами Папковича — Нейбера [145], Кельвина, Бусине-ска — Галеркина и др.  [c.75]

Следствия вариационного уравнения. Теорема Кастильяно. Пусть па малом участке поверхности AS ирило/кена сила Р, вектор кото-poii составляет углы а, р, с осями координат (рис. 9.24). Косинусы углов (напраиляющие косинусы)  [c.339]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Вариационные принципы типа Рейснера, Лагранжа и Кастиль-япо получаются отсюда совершенно так же, как в обычной теории упругости. При выводе уравнения Рейснера заметим, что вследствие (17.11.2)  [c.604]

Равенства (16) и (17) показывают, что при использовании каждого из общих решений Максвелла или Морера условиями стационарности функционала Кастильяно являются различные системы из трех уравнений неразрывности и соответствующих деформационных граничных условий. Из функционала 5к1(ф) (табл. 3.2), в котором используется общее решение (1.7) с шестью функциями напряжений (оно имеет вид Максвелл + Морера ), следует шесть уравнений неразрывности с соо1ветствующими граничными условиями [5.3]. Использование других общих решений приводит к несоответствию между вариационной и дифференциальной формулировками задачи [5.3] этот вопрос нуждается в дальнейшем исследовании.  [c.62]


Пример 3. Вариационное уравнение Кастилья-но теории оболочек в усилиях может быть получено из частного функционала Кастильяно Зкз(Л1,7) (табл. 4.2)  [c.145]

Э. Рейсснер [27] дает несколько иной вывод уравнений, вводя углы поворота, а также дает способ, преобразования системы уравнении. В 1949 г. А. Грин [23] вывел уравнения Рейсснера энергетическим путем без применения теоремы Кастилиано. Прием А. Грина обсуждает также С. П. Тимошенко [30]. Обобщение варианта Э, Рейсснера на произвольный закон изменения изгибных напряжений по толщине пластины, но одинаковый для всех трех компонентов, дано А. Л. Гольденвейзером [13] (1958 г.). Л. Я. Айнола [1] (1962 г.) показал, что функция распределения напряжений по толщине пластины, введенная А. Л. Гольденвейзером, может быть определена из вариационного принципа Кастилиано.  [c.191]

Покажем, что соотношения неразрывности деформаций (1.35) являются следствием вариационного уравнения Кастилиано. В предположении, что обобщенные краевые усилия не меняются бN = = = 8N J — 8Мц = 8ЛI g = О ), задача сводится к нахожде-  [c.87]

Итак, при формулировке вариационного принципа Кастилья-но (7.46), (7.47) мы требуем выполнения уравнений равновесия  [c.60]

Если решать задачи упругого равновесия по методу Сен-Венана, задаваясь из механических соображений значениями компонентов напряжённого состояния и применяя уравнения упругого равновесия Коши (4.24) и статические граничные условия (11.43), то главная трудность будет состоять в удовлетворении шести тождественных соотношений Бельтрами (4.48) и (4.50). Но из теоремы Саутуэлла ( 122) вытекает, что тождественные соотношения Сен-Венана являются следствием вариационного уравнения Кастилиано (11.70)  [c.445]

Таким образом, мы показали, что вариационное уравнение Кастилиано в приложении к плоской задаче приводит к бигар-  [c.454]


Смотреть страницы где упоминается термин Уравнение вариационное Кастильяно : [c.258]    [c.51]    [c.72]    [c.47]    [c.447]    [c.456]   
Теория упругости Изд4 (1959) -- [ c.338 ]



ПОИСК



Кастильяно вариационное уравнени

Кастильяно вариационное уравнени

Приложение вариационного уравнения Кастильяно к задаче о кручении призматического бруса

Приложение вариационною уравнения Кастилиано к плоской задаче при заданных на контуре сечения усилиях

Ряд вариационный

Уравнение вариационное в Кастилиано

Уравнение вариационное в Кастилиано

Уравнения Кастильяно



© 2025 Mash-xxl.info Реклама на сайте