Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Угловая скорость системы отсчета

На тело, которое покоится во вращающейся с постоянной угловой скоростью системе отсчета, помимо центростремительной силы (например, натяжения нити) действует центробежная сила инерции. Отсутствие ускорения у покоящегося тела вращающийся наблюдатель объясняет тем, что эти силы уравновешивают друг друга. Если же тело движется относительно вращающейся системы отсчета, то действующая в этой системе отсчета сила инерции имеет более слол<ный характер.  [c.368]


Угловая скорость системы отсчета (абсолютно твердого тела) 159  [c.572]

Основная задача динамики относительного движения точки, рассматриваемая в этой главе, состоит в следующем пусть система отсчета Охуг имеет известное нам движение относительно системы отсчета т. е. для любого момента времени нам известно абсолютное ускорение точки О, а также переносная угловая скорость и переносное угловое ускорение системы отсчета Охуг относительно системы отсчета О х у г . Зная силы, действующие на точку М, а также начальные условия движения как в отношении точки М, так и в отношении системы отсчета Охуг, требуется найти закон относительного движения точки М. Для решения этой задачи нужно сначала составить дифференциальные уравнения относительного движения точки М, а затем, проинтегрировав эти уравнения, найти искомый закон относительного движения этой точки М.  [c.500]

Если рассматривается движение какой-либо точки относительно системы отсчета, движущейся произвольным образом, то движение этой системы отсчета можно принять за переносное. Тогда формулы (41) будут служить для определения переносных скоростей и ускорений, и вектор (о, входящий в эти формулы, будет играть роль переносной угловой скорости — именно он войдет в выражение (40) для подсчета кориолисова ускорения.  [c.34]

Рассмотрим движение точки т по отношению к инерциаль-ной (латинской) и неинерциальной (греческой) системам как абсолютное и относительное движение соответственно переносным является движение греческой системы отсчета относительно латинской. Переносное движение задано, т. е. скорость точки А (начала координат греческой системы) и угловая скорость w переносного движения заданы как функции времени (О и скорость ТОЧКИ /И НО отношению к латинской системе (абсолютная скорость), то кинетическая энергия равна  [c.161]

С твердым телом может быть связана геометрическая твердая среда (см. гл. I), т. е. система отсчета. Поэтому все кинематические соотношения, полученные в гл. I для движения одной системы отсчета относительно другой, полностью применимы и к движению твердого тела относительно какой-либо системы отсчета, не связанной с телом. В частности, при движении тела в каждое мгновение существует вектор угловой скорости (о такой, что скорости точек тела распределены по закону г ,-= + и хг,-л, где /4 — произвольно выбранная точка тела, а — радиус-век-тор, проведенный к г-й точке тела из точки А.  [c.167]


V = Vp O и не перпендикулярна вектору й, система Wi,. .., сводится к винту. Это значит, что она эквивалентна вектору, совпадающему с й и лежащему на центральной оси, и паре, находящейся в перпендикулярной й плоскости и имеющей момент, равный проекции Vp на направление й. В этом случае мгновенное движение и-й системы отсчета относительно неподвижной складывается из поступательного движения вдоль направления центральной оси (т. е. вдоль направления, параллельного й) со скоростью, равной проекции Vp на й, и из вращения вокруг центральной оси с угловой скоростью й.  [c.363]

Задача 749 (рнс. 433). Кривошип ОА кулисного механизма поперечнострогального станка вращается с постоянной угловой скоростью сОд. В момент, когда кривошип занимает правое горизонтальное положение, определить скорость ползуна С и ускорение Кориолиса точки Л, если подвижная система отсчета связана с  [c.278]

Перманентная и мгновенная оси вращения. Если скорости точек тела, лежащих на оси АВ, равны нулю ао все время движения, то эта ось называется перманентной или постоянной осью вращения. Изложенные выше результаты относятся именно к этому случаю. Если же скорости точек тела, лежащих на некоторой оси, равны нулю только в данный момент времени, то эта ось называется мгновенной осью вращения. Значения скоростей всех точек тела в этом случае также определяются формулой (21), где векторная величина о, направленная по мгновенной оси вращения, называется мгновенной угловой скоростью тела, В отличие от перманентной оси, мгновенная ось вращения, а с ней и вектор мгновенной угловой скорости 0) непрерывно изменяют свое направление как в самом теле, так и по отношению к основной системе отсчета.  [c.100]

В дальнейшем, говоря для краткости о сложении, например, двух мгновенных угловых скоростей или мгновенной угловой и поступательной скорости, мы всегда подразумеваем, что одну из этих скоростей имеет тело по отношению к подвижной системе отсчета, а другую — подвижная система отсчета по отношению к основной. То же относится к случаю сложения трех и более скоростей.  [c.139]

Индекс е указывает, что угловая скорость здесь есть угловая скорость переносного движения, т. е. угловая скорость подвижной системы отсчета. Таким образом, сформулированная выше кинематическая теорема Кориолиса о структуре абсолютного ускорения точки доказана  [c.185]

Относительная производная Аг А1 = 1)г является относительной скоростью точки М по отношению к подвижной системе отсчета, а со — угловая скорость вращения подвижной системы отсчета и, следовательно, радиус-вектора г, если бы он в рассматриваемый момент времени был скреплен с подвижной системой осей координат. Таким образом, из (5) получаем  [c.189]

Угловую скорость вращательной части подвижной системы отсчета, т. е. угловую скорость переносного движения, заменили на  [c.191]

Сложение угловых скоростей. Рассмотрим движение твердого тела, вращающегося одновременно вокруг двух пересекающихся осей. Сообщим некоторому телу вращение с угловой скоростью (iV вокруг оси О А (рис. 1.12) и затем эту ось приведем во вращение с угловой скоростью (1)0 вокруг оси ОВ, неподвижной в /(-системе отсчета. Найдем результирующее движение тела в /(-системе.  [c.24]

Введем вспомогательную /( -систему отсчета, жестко связанную с осями ОА и ОВ. Ясно, что эта система вращается с угловой скоростью (до, и тело вращается относительно нее с угловой скоростью (а.  [c.24]

И последнее замечание. Поскольку вектор угловой скорости (О удовлетворяет основному свойству векторов— векторному сложению, и можно представить как векторную сумму составляющих на определенные направления, т. е. w = wi + W2 + -.., где все векторы относятся к одной и той же системе отсчета. Этим удобным и полезным приемом часто пользуются при анализе сложного движения твердого тела.  [c.24]


Это и есть основное уравнение динамики в неинерциальной системе отсчета, которая вращается с постоянной угловой скоростью ю вокруг оси, перемещающейся поступательно с ускорением ао. Из него видно, что даже при F = 0 частица будет двигаться в этой системе с ускорением, в общем случае отличным от нуля, причем так, как если бы на нее действовали некоторые силы, соответствующие последним трем членам уравнения (2.18). Эти силы назвали силами инерции.  [c.49]

Другой случай система отсчета вращается с угловой скоростью О) вокруг неподвижной оси, и тело А покоится в этой системе (например, вы сидите на горизонтальном вращающемся круге аттракциона колесо смеха ). На  [c.50]

Пример. На поверхности стола находится горизонтальный диск D, свободно вращающийся вокруг вертикальной оси с постоянной угловой скоростью (О Над диском висит шарик массы т, как показано на рис. 2.6, а. Рассмотрим поведение этого шарика в /С-системе отсчета, связанной со столом (она предполагается инерциальной), и в /( -системе, связанной с вращающимся диском.  [c.52]

Плоское движение твердого тела (см. с. 21). При плоском движении центр масс С твердого тела движется в определенной плоскости, неподвижной в данной К-системе отсчета, а вектор его угловой скорости (О все время остается перпендикулярным этой плоскости. Последнее означает, что в Д-системе твердое тело совершает чисто вращательное движение вокруг неподвижной в этой системе оси, проходящей через центр масс тела. Вращательное же движение твердого тела определяется уравнением (5.30), которое, как было отмечено, справедливо в любой системе отсчета.  [c.154]

Найдем модуль и направление вектора R. В системе отсчета, где стержень вращается с угловой скоростью ш, его центр масс (точка С) движется по горизонтальной окружности. Поэтому из уравнения движения центра масс (3.11) сразу следует, что вертикальная составляющая вектора R есть R, =mg, а горизонтальная составляющая 7 определяется уравнением та = Л , где а — нормальное ускорение центра масс С. Отсюда  [c.170]

Первые два закона движения выполняются только тогда, когда наблюдение ведется в системах отсчета, движущихся без ускорения. Это видно из нашего повседневного опыта. Например, если система отсчета неподвижно связана с вращающейся каруселью, то в такой системе отсчета ускорение тела не равно нулю, когда на это тело не действуют силы. Вы сможете неподвижно стоять на карусели, только если будете отталкиваться от чего-либо, сообщая вашему телу силу Mat r по направлению к оси, где Л1 —ваша масса, со —угловая скорость, а г —расстояние от вас до оси вращения. Другой пример — система отсчета, неподвижно связанная с самолетом, который быстро набирает скорость при взлете. Благодаря ускорению вас прижимает назад к сиденью, а сила, действующая со стороны спинки сиденья, удерживает вас в состоянии покоя относительно этой системы.  [c.72]

Определим проекции вектора угловой скорости (о на подвижные оси координат Oxyz, скрепленные с rejmM. Движение тела при этом рассматривается относительно неподвижной системы отсчета При проецировании на оси координат  [c.497]

Таким образом, кориолисовд ускорение равно удвоенному векторному произведению переносной угловой скорости (угловой скорости подвижной системы отсчета) на относительную скорость точки.  [c.162]

Система угловых скоростей при движении п систем отсчета. Рассмотрим п систем отсчета, движущихся одна относигельно другой (см. 5 гл. I). Перенумеруем как-либо эти системы (считая неподвижную систему отсчета нулевой) и временно ограничимся случаем, когда каждая i-я из них в рассматриваемый момент совершает относительно предыдущей (г—1)-й системы мгновенное вращение с угловой скоростью о) . Множество векторов ft)i,. .., ()) составляет систему скользящих векторов. Чтобы показать это, рассмотрим мгновенное враще1П1е двух систем отсчета с угловыми скоростями o)i и предположив, что векторы ft)i и (О., лежат на одной прямой и направлены в противоположные стороны, а их модули равны, так что (0.2 = — ш,. Если принять движение с угловой скоростью to, за переносное, а с угловой скоростью —за относительное, то скорость точки а в абсолютном движении (см. гл. 1) будет равна  [c.361]

Задача 747 (рис. 431). Шток AD, двигаясь в направляющих, приводит в движение стержень АС, который все время проходит через неподвижную точку В. В момент, когда ело = 30°, шток им( ет скорость 10 см/сек и ускорение 2 3 Mj eK . Определить в этот момент угловую скорость и угловое ускорение стержня АС, а также относительное ускорение и ускорение Кориолиса точки В, предпола1 ая, что подвижная система отсчета х у связана со стержнем. Расстояние от точки В до направляющей штока равно 5 см.  [c.277]

В кабине лифта, дви жущейся вверх относительно неподвижной системы отсчета xyz согласно закону 2=0,1 (z — B метрах, t — в секундах) по горизонтальной плоскости равномерно катится без скольжения круглый конус высотой 0,С=0,2м и углом при вершине AOiB = 60° с угловой скоростью вокруг вертикальной оси OiZ,, связанной с лифтом системы осей Xii/iZi oi = 2 рад/с. Точка Oi конуса относительно кабины неподвижна. Определить модуль скорости точки С конуса относительно неподвижной системы отсчета в момент времени = 1 с.  [c.62]

Проанализируем процесс вывода выражения ускорения Корио-л са. Векторное произведение вектора угловой скорости переносного вращения на вектор линейной относительной скорости точки получено дважды. Впервые оно получается, когда берется полная производна от относительной скорости по формуле Бура. В этой формуле векторное произведение х щ выражает изменение вектора относительной скорости, входящей в абсолютную скорость, благодаря вращению этого вектора вместе с траекторией относительного движения вследствие переносного вращения всей подвижной системы отсчета.  [c.185]


Формулы (67) вполне определяют величину и направление в системе Ахуг дополнительной динамической реакции подшипника В. Система координат Ахуг связана с телом, поэтому центробежные моменты инерции Jхг и Jуг не изменяются при вращении тела. Если предположить, например, что угловая скорость тела со постоянна, то из формул (67) следует, что дополнительная динамическая реакция Нв постоянна по величине и сохраняет неизменное направление в системе Ахуг. Поэтому реакция Яв поворачивается вместе с телом и изменяет свое наиравлепие по отношению к неподвижной системе отсчета, что вызывает необходимосгь крепления подшипников во всех направлениях.  [c.352]

Система отсчета, скрепленная с земным шаром, не является инерциальной. Земной шар движется относительно гелиоцентрической инерциальной системы отсчета, При рассмотрении движения материальных те.т относительно Земли должны проявлять себя эффекты, связанные с неинерциальностью системы отсчета. Земной шар движется относительно гелиоцентрической системы отсчета как свободное твердое тело. Его центр перемещается по эллиптической орбите, близкой к окружности. Кроме того, он вращается вокруг оси, проходящей через его центр, с почти постоянной по величине и направлению угловой скоростью, совершая один оборот за сутки. Угловая скорость вращения Земли  [c.253]

В системе отсчета, BHsannoii с Землей (она вращается с угловой скоростью <а ), составляющая ускорения поезда, перпендикулярная плоскости меридиана, равна нулю. Поэтому и сумма проекций сил, действующих на поезд в этом направлении, также равна нулю. А это значит, что сила Кориолиса F op (рис. 2.5) должна уравновешиваться силой R бокового давления, действующей на поезд со стороны правого по ходу движения рельса, т. е. Ркор =—R- По третьему закону Ньютона, поезд будет действовать на этот рельс в горизонтальном направлении с силой R = —R. Следовательно, R = Fkop=> = 2m[v o) ]. Модуль вектора R равен i = 2mo D sin ф.  [c.52]

Решение. Пусть К — ннерциальная (по условию) система отсчета, в которой ось вращения Земли покоится, а /С — неинерциаль-ная система отсчета, которая связана с Землей и вращается с угловой скоростью со относительно К-системы.  [c.60]

Пример. Ультрацентрифуга. Результаты того, что тело находится в неинерциальной системе отсчета, могут иметь огромное практическое значение. Рассмотрим молекулу, находящуюся во взвешенном состоянии в жидкости, которая содержится в пробирке ультрацентрифуги. Предположим, что молекула находится на расстоянии 10 см от оси вращения и что центрифуга вращается с частотой 1000 об/с (60ООО об/мин). Тогда угловая скорость  [c.72]

Согласно первому закону Ньютона взвешенная молекула стремится остаться неподвижной (или двигаться по прямой с постоянной скоростью), если рассматривать ее движение относительно лаборатории (лаборатория представляет собой достаточно хорошее приближение к системе отсчета, не имеющей ускорения). Молекула в ультрацентрифуге как бы противится бешеному вращению с большой угловой скоростью. Для наблюдателя, покоящегося относительно ротора ультрацентрифуги, молекула растворенного вещества будет вести себя так, как если бы на нее действовала сила M oV, стремящаяся оттолкнуть ее от оси вращения в сторону наружной стенки пробирки, вставленной в ротор центрифуги. Как велика эта сила Предположим, что молекулярная масса растворенного вещества равна 100 000, т. е. что масса М молекулы этого вещества приблизительно в 10 раз больше массы протона  [c.73]

Рассмотрим движение относительно неинерциальной системы отсчета, вращающейся с постоянной угловой скоростью щ вокруг оси Z инерциальной системы отсчета (рис. 3.27). Постановка этой задачи обусловлена тем фактом, что Земля вращается, и поэтому система отсчета, закрепленная относительно поверхности Земли, не является инерциальной системой. Рассматривая движение относительно системы отсчета, неподвижно связанной с поверхностью Земли, надо ввести дополнительные слагаемые в уравнение F = ТИа, чтобы. учесть ускорение этой системы отсчета. Помимо уже известного нам центростремительного ускорения мы обнаружим при анализе наличие ускорения Ко-риолиса, которое играет важную роль при движении больших потоков морских вод и воздуха ).  [c.103]


Смотреть страницы где упоминается термин Угловая скорость системы отсчета : [c.246]    [c.265]    [c.41]    [c.363]    [c.363]    [c.263]    [c.49]    [c.89]    [c.275]    [c.187]    [c.254]    [c.127]    [c.156]    [c.105]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.0 ]



ПОИСК



Отсчет

Система отсчета

Система отсчета (см. Отсчета система)

Система угловых скоростей

Система угловых скоростей при движении п систем отсчета

Скорость угловая

Угловая скорость системы отсчета абсолютно твердого тела)

Угловая скорость системы отсчета частицы



© 2025 Mash-xxl.info Реклама на сайте