Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема об изменении кинетической энергии твердого тела

Теорема об изменении кинетической энергии твердого тела  [c.259]

Это наводит на мысль придать теореме об изменении кинетической энергии твердого тела еще одну форму  [c.71]

При решении задач с применением теоремы об изменении кинетической энергии твердого тела, вращающегося вокруг неподвижной оси, необходимо придерживаться следующего порядка.  [c.231]

Теорема об изменении кинетической энергии твердого тела запишется теперь следующим равенством  [c.164]


В случае неизменяемой системы материальных точек, например, абсолютно твердого тела, сумма работ внутренних сил равна нулю и теорема об изменении кинетической энергии системы материальных точек принимает вид  [c.305]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Решение. По теореме об изменении кинетической энергии для цилиндра как для твердого тела  [c.300]

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении  [c.252]

Два уравнения движения центра масс и уравнение вращения, взятые в одном из указанных выше видов, представляют полную систему дифференциальных уравнений плоского движения твердого тела. При действии потенциальных сил следует использовать соотношение, даваемое теоремой об изменении кинетической энергии и представляющее собой один из первых интегралов указанной системы дифференциальных уравнений.  [c.262]

Для решения этой задачи удобнее всего воспользоваться теоремой об изменении кинетической энергии в конечной форме (31) для случая движения абсолютно твердого тела  [c.650]

Как формулируется и записывается теорема об изменении кинетической энергии мех. системы в общем случае и для системы твердых тел  [c.185]

Применение элементарной теории. Приведенная масса. В элементарной теории соударения твердых деформируемых тел используют ряд упрощающих гипотез, основными из которых являются предположения о возможности пренебрежения локальными инерционными силами и о возможности аппроксимации динамических смещений статическими. Так, в задаче об ударе твердого тела массы М по свободному концу стержня, заделанного на другом конце принимается равномерное распределение напряжений. Напряжение а определяют из теоремы об изменении кинетической энергии  [c.262]


При применении теоремы об изменении кинетической энергии системы очень часто приходится вычислять кинетическую энергию движущегося твердого тела. Найдем ее выражения при важнейших видах движения тела.  [c.329]

По теме Теорема об изменении кинетической энергии системы планируется расчетно-графическое задание и контрольная. Контролируемый уровень знаний студента — умение найти кинетическую энергию системы при любом движении входящих в нее абсолютно твердых тел и работу сил различного типа. Этой теме уделяется большое внимание, поскольку она является базой для освоения аналитических методов механики.  [c.26]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

С теоремой об изменении кинетической энергии системы связано определение уравновешенной системы сил, действующих на абсолютно твердое тело система сил называется уравновешенной, если она своим действием не изменяет кинетическую энергию твердого тела на его произвольных малых перемещениях. Отсюда и из теоремы об изменении кинетической энергии системы вытекают необходимые и достаточные условия уравновешивания систем сил, действующих на абсолютно твердое тело равенство нулю главного вектора и главного момента сил относительно произвольного центра. Как частные случаи из них получаются условия уравновешивания систем сходящихся сил, систем сил параллельных в пространстве и на плоскости, произвольной плоской системы сил.  [c.70]

Основные положения статики вытекают из теоремы об изменении кинетической энергии системы. Такой прием позволяет, во-первых, исключить из курса ряд элементарных теорем статики, которые получаются в данном случае как следствия, и, во-вторых, получить условия равновесия сил, действующих на абсолютно твердое тело, именно в то время, когда они необходимы студентам для изучения сопротивления материалов. Этого нельзя добиться, если в основу статики положить принцип возможных перемещений, что потребовало бы предварительного рассмотрения таких понятий, как возможные перемещения, идеальные связи, а также свойств идеальных связей. Кроме того, энергетический подход к решению статических задач оправдывается тем, что кинетическая энергия является основополагающим понятием механики, о чем было сказано выше. С методологической точки зрения эту особенность трудно переоценить.  [c.71]

В этом частном случае теорема об изменении кинетической энергии будет формулироваться так дифференциал кинетической энергии системы с идеальными связями равен сумме эле ментарных работ действующих на систему активных сил. Особенно полезной будет эта форма теоремы об изменении кинетической энергии для абсолютно твердого тела.  [c.395]

Для решения задачи воспользуемся теоремой об изменении кинетической энергии абсолютно твердого тела в конечном виде. Будем иметь  [c.398]

На основании теоремы об изменении кинетической энергии для твердого тела в дифференциальной форме имеем  [c.406]

То есть силы реакций внутренних связей, обеспечивающих сохранение конструкции твердого тела, не совершают работы. Кроме того, они пе зависят от времени. Поэтому при применении теоремы об изменении кинетической энергии к твердому  [c.154]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]


На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Абсолютно твердое тело представляет собой множество точек, расстояния между которыми не изменяются. В силу специфики связей движение такой системы полностью описывается теоремами об изменении количества движения, кинетического момента и кинетической энергии. Поэтому свойства движения, выделяемые этими теоремами, проявляются в динамике твердого тела особенно выпукло.  [c.443]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

В частных случата некоторые из векторов, а возможно и все, равны нулю или настолько малы, что ими можно пренебречь. Для составления уравнения движения машинного агрегата используется теорема об изменении кинетической энергии механизма как система твердых тел с учетом принхщпа затвердевания (переменную массу выносят за знак дифференцирования как постоянную величину и оператор отмечают звездочкой.) Для этого случая  [c.496]

Решение. Обычно в курсах теоретической механики дифференциальное уравнение вращения твердого тела вокруг неподвижной оси выводится с помощью теоремы об изменении главного момента количеств движения. Вместе с тем можно, минуя эту теорему, получить искомое уравнение с помощью теоремы об изменении кинетической энергии в диф-ферен1щальной форме  [c.374]

Теорема об изменении кинетической энергии при вращательном движении формулируется так изменение кинетической энергии при вращении твердого тела вокруг неподвижной оси г за некоторый промежуток времени равно работе моментов сил, приложенных к телу, на соотжтствующем угловом перемещении ф, т. е.  [c.231]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


С теоремой об изменении кинетической энергии системы связано определение эквивалентных систем сил две систёмы сил, действующие на абсолютно твердое тело, называются эквивалентными, если они своим действием вызывают одинаковые изменения кинетической энергии тела на одинаковых произвольных элементарных перемещениях, т. е. на этих перемещениях выполняют одинаковые элементарные работы. Из этого определения вытекает, что необходимыми и достаточными условиями эквивалентности двух систем сил, действующих на абсолютно твердое тело, являются равенства их главных векторов и их главных моментов относительно одного и того же центра.  [c.70]

Для абсолютно твердого тела работа внутренних сил равна нулю, и в этом случае из теоремы об изменении кинетической энергии исключается большое число неизвестных сил. Поэтому при изучении движения твердого тела в поле сил, имеюи их потенциал, следует применять закон (95), позволяющий простым путем выяснить основные особенности механического движения.  [c.397]

Кинетическая энергия механической системы. Формулы для вычисления кинетической энергии твердого тела при поступагельпом движении, при вращении вокруг неподвижной оси и в общем случае движения (в частности, при нлоскопараллельном движении). Теорема об изменении кинетической энергии механической системы в дифференциальной н конечной формах. Равенство нулю суммы работ внутренних сил в твердом теле. Работа и мощность снл, приложенных к твердому телу, вращающемуся вокруг иеподвн/кной осп.  [c.9]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Обобщим полученные ранее результаты на случай гипердвижения тел переменной массы. Лля этого, пользуясь методологией, развитой в работе [177], сформулируем, прежде всего, основные теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии. Рассматривая тело как совокупность точек, движение которых определяется гиперреактивными уравнениями, можно получить формулировки основных теорем гипердинамики твердых тел переменной массы.  [c.206]


Смотреть страницы где упоминается термин Теорема об изменении кинетической энергии твердого тела : [c.526]    [c.179]   
Смотреть главы в:

Сборник коротких задач по теоретической механике  -> Теорема об изменении кинетической энергии твердого тела

Курс теоретической физики Классическая механика Основы специальной теории относительности Релятивистская механика  -> Теорема об изменении кинетической энергии твердого тела


Курс теоретической механики Часть1 Изд3 (1965) -- [ c.394 , c.395 ]



ПОИСК



Кинетическая энергия—см. Энергия

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема об изменении кинетического

Теорема об изменении кинетической энергии

Теорема об изменении кинетической энергии материальной точки и твердого тела при поступательном движении

Теорема об изменении энергии

Энергия Теорема

Энергия изменения

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая твердого тела

Энергия твердого тела

Энергия тела кинетическая



© 2025 Mash-xxl.info Реклама на сайте