Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы антифрикционные — Применение

Применение цветных сплавов антифрикционных 9 — 23  [c.285]

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий, а также полуфабрикатов методами литья и обработки давлением, нормируются ГОСТ 21437-95. Механические свойства сплавов зависят от их химического состава предел прочности = 250 -5- 350 МПа (25-35 кгс/мм ), относительное удлинение 8 = 0,4 10 %, твердость 85-100 НВ. Стандарт устанавливает марки этих сплавов, области их применения и условия работы  [c.249]


Алюминиевые подшипниковые сплавы. Состав, условия применения и свойства антифрикционных сплавов на алюминиевой основе приведены в табл. 11, 12, 13.  [c.407]

Сплавы антифрикционные — Применение 85,  [c.291]

У каждого подшипникового материала есть своя область применения. Вкладыши из чугуна используют в подшипниках с большими удельными нагрузками на вкладыш при малых скоростях перемещения вала относительно вкладыша подшипника. Коэффициент трения у пары чугун — сталь выше, чем у стали с бронзой или баббитом. Но чугун значительно лучше переносит высокие удельные нагрузки без смятия. Чугун дешевле, чем другие антифрикционные сплавы. Антифрикционные серые, ковкие и высокопрочные чугуны имеют перлитную металлическую основу и повышенное содержание графита. Графит хорошо впитывает смазки, а при износе сам играет роль смазки. Графитовые включения должны быть средних размеров.  [c.243]

И ЛИШЬ после второй мировой войны алюминиевые сплавы нашли широкое применение в качестве антифрикционного плакирующего материала при изготовлении вкладышей подшипников из биметалла на стальной основе.  [c.37]

Биметаллы. Биметаллами называют металлические материалы, состоящие из двух и более слоев, например из стали и цветного сплава. Биметаллы удовлетворяют различным требованиям к сердцевине изделий (например, прочности и жесткости) и к поверхностным слоям (например, коррозионной стойкости и антифрикционным свойствам). Применение биметаллов приводит к большой экономии дорогих сплавов. Биметаллические изделия изготовляют отливкой, плакированием (совместной прокаткой), сваркой, пайкой и другими способами получения покрытий.  [c.43]

Антифрикционный чугун. Применение такого чугуна в качестве антифрикционного материала дает возможность заменять дорогие цветные сплавы, особенно при изготовлении подшипников для таких узлов трения, где исключено приложение ударной нагрузки.  [c.37]

Повышенные антифрикционные свойства и высокое сопротивление усталостным разрушениям обеспечивают новые триметаллические подшипники. Наиболее распространенные отечественные композиции трехслойных вкладышей состоят из стальной основы, промежуточного пористого медноникелевого или порошкового слоя и свинцового сплава, заполняющего поры промежуточного слоя и образующего рабочий поверхностный слой толщиной не более 100 мкм. Триме-таллы нашли широкое применение в автопромышленности (ГАЗ-53, ЗИЛ-130, ЗИЛ-375).  [c.358]


Баббиты. Для заливки вкладышей подшипников применяются легкоплавкие антифрикционные сплавы (баббиты) на оловянной или свинцовой основе. Они имеют по сравнению с другими антифрикционными материалами самый малый коэффициент трения (f = 0,004 -V- 0,009) и, обладая хорошей прирабатываемостью, являются основным подшипниковым материалом, допускающим работу с высокими скоростями и давлениями. Высокая стоимость баббитов, в несколько раз превышающая стоимость бронз, ограничивает область их применения.  [c.214]

Большим препятствием к применению алюминиевых антифрикционных сплавов является присущий им высокий коэффициент теплового расширения [5, 7].  [c.110]

Применение сплава алюминия с 30% олова. Сплав по своим антифрикционным свойствам равноценен баббитам и хорошо противостоит заеданию.  [c.116]

Фиг. 29 показывает, что присадка сурьмы вызывает значительное повышение твердости сплава. Практическое применение в качестве антифрикционных  [c.320]

В последние годы проводятся исследования антифрикционных свойств и износостойкости пластмасс различного типа. Для некоторых условий работы такие материалы обладают рядом преимуществ по сравнению с металлическими антифрикционными сплавами — лучшим прилеганием, уменьшением износа вала и др. Получили применение втулки из капрона, в том числе — с разными наполнителями.  [c.51]

В четвертой главе описаны обеспечивающие режим ИП антифрикционные покрытия, полученные путем фрикционной обработки деталей методы получения покрытий свойства покрытий области их целесообразного применения. Большой интерес представляет улучшение антифрикционных свойств титановых сплавов путем нанесения на них фрикционных покрытий. Покрытия, полученные фрикционным методом, применяют в узлах трения авиационной техники, в гидросистемах в настоящее время проводятся работы по их использованию в качестве приработочных покрытий для цилиндров двигателей внутреннего сгорания.  [c.4]

С развитием новых технологических процессов получения биметаллических подшипников из алюминиевых сплавов область применения их расширилась. В биметаллических вкладышах в качестве рабочего антифрикционного слоя применяют наиболее пластичные алюминиевые сплавы, обладающие хорошей способностью прирабатываться и впитывать загрязнения (продукты износа и абразивные частицы) смазочного масла.  [c.113]

В ФРГ. В начальный период применения алюминиевых антифрикционных сплавов в основу изыскания состава сплавов был положен принцип строения подшипниковых материалов—твердые частицы, вкрапленные в более мягкую и пластичную основу. Так, фирмой Юнкере для авиационных двигателей применялись сплавы с никелем, а для легких тракторных двигателей сплавы с медью (2—8% Си). Сплавы Альва с сурьмой и добавками олова, свинца и графита — применялись для различных условий работы. Для изготовления втулок фирма Карл Шмидт применяет вместо бронзы сплавы, содержащие кремний, по составу аналогичные поршневым. По сравнению с бронзой эти сплавы более теплоустойчивы и износостойки. Однако при разрывах масляной пленки они подвержены задирам.  [c.123]

Литейные оловянные бронзы применяют главным образом для получения пароводяной (герметичной) арматуры, работающей под давлением, и для отливки антифрикционных деталей (втулки, подшипники, вкладыши, червячные пары и др.). Они находят применение также для изготовления различных деталей в общем машиностроении в тех случаях, когда требуется сочетание высоких коррозионных, антифрикционных свойств, электро- и теплопроводности. Эти бронзы отличаются хорошими литейными свойствами высокой жидкотекучестью, малой линейной усадкой объемная усадка значительна, но рассредоточена равномерно по всему объему, что позволяет получать отливки без применения прибылей и иметь высокий выход годного (80—90%) при литье, т. е. пониженную себестоимость отливки по сравнению с другими литейными сплавами (алюминиевые бронзы, латуни, стали и т. д.). Хотя рассредоточенная (рассеянная) усадка усложняет  [c.224]

Твердость легкоплавких отливок колеблется от 5 до 22 по Бринелю, а предел прочности — от 2 до 9 кГ/мм и относительное удлинение — от О до 300%. Низкая температура плавления, хорошая жидкотекучесть, а также хорошие адгезионные и антифрикционные свойства (некоторых составов) обусловили широкое применение легкоплавких сплавов в технике для изготовления припоев, подшипников, пуансонов, матриц, моделей, шаблонов, стержней, деталей узлов машин и аппаратов, контрольных инструментов, заливки абразивных и алмазных материалов, в качестве форм для литья пластмасс и смол, в зубопротезной технике, пломб, дублирования оттисков, уплотнителей, удерживающих прокладок, предохранительных легкоплавких пробок в противопожарном оборудовании и баков (цилиндров) высокого давления, автоматических выключателей для газовых и электрических систем нагревания воды.  [c.261]


Цинковые подшипниковые сплавы склонны к заеданию в паре со сталью, что ограничивает их применение при малых удельных нагрузках. Подшипники должны готовиться с большой точностью, при работе с ними необходимо обеспечить постоянную подачу смазки. Цинковые антифрикционные сплавы в таких условиях имеют преимущество перед бронзами коэффициент трения по стали со смазкой у них ниже, чем у бронз.  [c.272]

Изготовление, обработка и применение безоловянистых и малооловянистых антифрикционных сплавов, краткое руководство, Металлургиздат, 1952.  [c.200]

Химико-термическая обработка 7 — 559 Сплавы цветные антифрикционные — Применение в станкостроении 9 — 23  [c.274]

Шуб и Горюнов, Временные инструкции по применению антифрикционного серого и ковкого чугуна как заменителя цветных сплавов, М. 1941,  [c.554]

Антифрикционный сплав A M содержит 3,5—4,5% Sb, 0,3—0,7% Mg, остальное А1. Область применения та же, что и бронзы Бр. 30 (см. табл. 16). Вкладыши штампуют из биметаллической ленты, получаемой прокатом полос сплава A M с малоуглеродистой сталью. Допускаемые значения [р] < 280 кГ/см , [г ] < 10 м/сек, [pv] < 250 кГ мкм -сек.  [c.612]

В отечественном и зарубежном машиностроении в последние годы широкое распространение получили антифрикционные сплавы на алюминиевой основе. Они характеризуются хорошей теплопроводностью, высокой усталостной прочностью и высокой коррозийной стойкостью в среде высокомолекулярных органических масел. В отличие от сплавов на медной основе они не ускоряют процессов окисления смазочных масел, а потому исключается необходимость применения специальных антикоррозийных присадок к маслам.  [c.72]

Точность перемещения и стабильность положения рабочих органов повышаются снижением сил трения в направляющих, устранением в них зазоров и увеличением их жесткости. Уменьщение сил трения в направляющих достигается применением специальных синтетических материалов, антифрикционных металлов, сплавов и мастик.  [c.590]

Медные сплавы находят большое применение в технике, хотя и 1меньшее, чем сталь. Сплавы меди применяются как антифрикцион ный материал, например, свинцо вистая и оловяннстая бронза конструкционный — латуни, алю миниевая и бериллиевая бронза антикоррозионный — морская бронза, а также для электротехнических целей — кадмиевая  [c.248]

Цветные металлы и особенно их сплавы получили широкое применение в современном машиностроении, так как они имеют некоторые очень ценные свойства, каких нет у черных металлов. К этим свойствам следует отнести высокую электропр водность, высокую коррозионную стойкость, антифрикционные качества, малый удельный вес.  [c.22]

Для неответственных подшипников применяют дешевые цинкоалюминиевые сплавы типа ЦАМ 10-5 (10%А1 5%Си остальное гп) и ЦАМ 9 — 1,5 (9% А1 1,5Си). Твердость их НВ 60— 80 коэффициент линейного расширения (30 —32)-10 плотность 6,2 кг/дм . Антифрикционные качества цинкоалюминиевых сплавов посредственные. Необходимо применение валов твердостью >НКС 50. Наилучшими качествами обладают нестандартные высокоалюминиевые цинковые сплавы (30—40% А1 5—10% Си остальное Zn). Твердость их НВ 50— 60.  [c.356]

Если же применения дефицитных цветных сплавов избежать нельзя, то следует сокращать их расход до минимума. В качестве примера приведем корпус с многочисленными поверхностями трения (центральное отверстие и отверстия в проушинах). В конструкции ж корпус выполнен целиком из антифрикционной бронзы, а в рациональной конструкции з — пз чугуна (или другого недефйцитного металла) поверхности трения образованы бронзовыми втулками.  [c.610]

Облает, применения сплава АЛ 18В. Сплав АЛ 18В применяется главным образом как антифрикционный сплав для изготовления подшипников электромоторов мощностью до 100 кет и с числом оборотов до 1500 в ми-иуту.  [c.98]

Применение индия определила его высокая стойкость против коррозии в среде минеральных масел и продуктов их окисления, низкий коэффициент трения и устойчивость к атмосферным воздействиям. Индиевые покрытия используются для повышения отражательной способности рефлекторов, в качестве антифрикционных покрытий и для зашиты от коррозии в специальных средах. К сожалению, индий обладает малой твердостью и узкой областью рабочих температур, в связи с этим широкое распространение получили сплавы индия, улучшающие эти свойства. Так, электролитический сплав индия со свинцом хорошо зарекомендовал себя в условиях трения без смазки. Сплав индия с таллием характеризуется сверхпроводимостью при низких температурах, сплавы нидий-кадмий, индий-цинк во много раз лучше сопротивляются коррозии, чем чистые кадмиевые или цинковые покрытия. Хорошими антифрикционными свойствами обладают и другие индиевые сплавы индий — никель, индий — кобальт, индий — серебро. Ценными свойствами обладает сплав индий — палладий. Индиевые покрытия можно получить из различных электролитов цианистых, сернокислых, сульфаматных, тартратных, борфтористоводородных. Составы наиболее употребляемых электролитов приведены в табл. 33.  [c.79]

Широкое применение имеют антифрикционные смазки ЦИЛТИМ-201 и ЦИАТИМ-221. Смазка ЦИАТИМ-201 представляет собой минеральное масло, загущенное литиевым мылом. Она может быть использована при температуре 100°С. Смазка химически стабильна, но не рекомендуется для работы в контакте с цветными сплавами. Смазка ЦИАТИМ-221 используется в широком интервале температур (до 150°С) и представляет собой кремнийорганическую жидкость, загущенную лптиевым мылом. Смазка не действует на резину, поэтому ею можно смазывать резиновые манжеты. Смазка ЦИАТИМ-221 стойка в парах кнслот.  [c.37]

Из-за большой разницы коэффициентов теплового расширения алюминиевых сплавов и стали или чугуна монометаллические вкладыши из алюминиевого сплава, установленные в стальной или чугунный корпус (наиболее распространенная конструкция подшипника), при рабочих температурах могут иметь высокие внутренние напряжения сжатия, тем большие, чем выше температура (см. табл. 77—78). При некоторой критической температуре внутренние напряжения могут достигать предела текучести материала (при условиях, зависящих от посадки, геометрических размеров, прочности сплава и разницы в коэффициентах теплового расширения корпуса и вкладыша) и вкладыши начнут деформироваться пластически. Вследствие этого при последующем охлаждении вкладышей внутренний диаметр их уменьшается против начального, что приводит к опасному уменьшению или исчезновению зазора между валом и вкладышами. Величина критической температуры, как показали расчеты и экспериментальная прогерка, обратно пропорциональна пределу текучести материала, что и привело к распространению наиболее прочных алюминиевых сплавов в начальный период промышленного применения алюминиевых антифрикционных сплавов.  [c.113]


В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

В зависимости от используемых наполнителей пластмассы подразделяют на композитные и слоистые. Некоторые пластмассы представляют собой чистые смолы и применяются без наполнителей. Композиции из смолы и наполнителей обычно прочнее чистой смолы. Наполнитель влияет на водостойкость, химическую стойкость и диэлектрические свойства, на теплостойкость и твердость пластмассы. Наполнители существенно снижают стоимость пластмасс. Положительные свойства пластмасс малая плотность, удовлетворительная механическая прочность, не уступающая в ряде случаев цветным металлам и сплавам и серому чугуну химическая стойкость, водо-масло- и бензостойкость высокие электроизоляционные свойства фрикционные и антифрикционные шумо- и вибропоглощающие свойства возможность окрашивания в любой цвет малая трудоемкость переработки пластмасс в детали машин. Отдельные виды пластмасс обладают прозрачностью, превышающей прозрачность стекла. Вместе с тем, применение пластмасс ограничивается их отрицательными свойствами. Недостаточная теплостойкость некоторых разновидностей пластмасс вызывает их обугливание и разложение при температуре свыше 300° С. Эксплуатационная температура для изделий из пластмасс обычно не превышает 60° С и реже 120° С. Только пластмассы отдельных видов допускают эксплуатационную температуру 150—260 С и выше. Низкие теплопроводность и твердость, а также ползучесть пластмасс в ряде случаев нежелательны. Свойства и методы испытания пластмасс приведены ниже.  [c.151]

Легирование железом алюминиево-марганцовистых бронз способствует еще большему. повышению уровня их механических и технологических свойств. В отечественной и зарубежной промышленности достаточно широко применяются бронзы системы Си— А1—Мп—Ре(табл. I. 35). Они используются как в литом состоянии, так и после обработки давлением. Эти сплавы сочетают удовлетворительные механические свойства с хорошими антифрикционными свойствами при достаточной коррозионной стойкости. Однако из сопоставления данных табл. I. 35 следует, что бронзы системы Си—С1—Мп—Ре не отличаются разнообразием в химическом составе. В основном в мировой промышленности находят применение сплавы типа Бр. АЖМц10-3-1,5. В связи с этим следует считать, что система Си—А1—Мп—Ре является достаточно перспективной для дальнейших разработок. При этом реальным направлением изыскания более совершенных сплавов этой системы является  [c.86]

Меры, предупреждающие или замедляющие коррозию 1) эксплоатация подшипников при сравнительно низких температурах и правильном режиме вентиляции 2) улучшение качества масла, выбор сорта масла с учётом специфических свойств антифрикционного сплава и применение подходящих ингибиторов (замедлителей) коррозии, вводимых в масло 3) покрьпие рабочей поверхности подшипника металлом, например, индием, или сплавом, способным защитить её от коррозийной агрессии 4) применение антифрикционных сплавов с присадками, повышающими коррозийную стойкость.  [c.635]

Медно-сурьмяно-никелевый сплав не уступает по антифрикционным свойствам Бр-ОФ-10 Ллюминиево-медно кремневый сплав требует больших зазоров, чем бронза (на 8—Юмк при толщине втулки обильной смазки и термически обработанных валов Цинк0-алю. 1иниев0-медный сплав отличается некоторой хрупкостью требует применения зазоров, в 1,5 раза больших, чем при бронзах  [c.23]

Использование цинка в сплавах с другими металлами имеет еще большее промышленное значение. Во многих сплавах содержание цинка значительно так, в латунях содержание цинка близко к S Jb, в сплавах с. медью и никелем оно составляет 20—35% Широкое применение имеют сплавы на цинковой основе, т. е. с Zn > 50%, например, сплавы для деталей арматуры, отливаемые под давлением, антифрикциониые сплавы для подшипников, сплавы для обработки давлением, а также сплавы цинка со свинцом для изготовления типографских клише.  [c.208]

Наиболее эффективными путями увеличения долговечности узлов и деталей являются улучшение системы смазки и подбор смазок, применение накладок из синтетических и других антифрикционных материалов, использование высококачественных и легированных сталей для ответственных и тяжелонагружеппых деталей, наплавка трущихся поверхностей твердыми сплавами, объемная и поверхностная закалка, упрочнение, снижение удельного давления на контактных поверхностях, применение демпфирующих элементов в сочленениях деталей.  [c.529]

Отливки из сплавов цвтных металлов. Отливки из бронзы и ее сплавов. Бронза обладает высокими антифрикционными свойствами, благодаря чему является наилучшим материалом для подшипников, ползунов, упорных колец, колес червячных передач и других деталей, испытывающих трение скольжения. Однако в целях экономии дефицитных и дорогостоящих цветных металлов применение бронзовых и латунных деталей вообще и отливок из этих сплавов, в частности, должно быть сведено к минимуму. Особенно это относится к оловянистой бронзе. Для перечисленных и аналогичных им деталей использование бронзы может и должно сводиться к введению втулок, накладок вкладышей, зубчатых венцов и т. д., устанавливаемых только в местах, непосредственно работающих на трение.  [c.45]



Смотреть страницы где упоминается термин Сплавы антифрикционные — Применение : [c.422]    [c.390]    [c.217]    [c.403]    [c.353]    [c.475]    [c.128]   
Автомобильные материалы (1971) -- [ c.85 ]



ПОИСК



Антифрикционность

Сплавы Применение

Сплавы антифрикционные

Ч антифрикционный



© 2025 Mash-xxl.info Реклама на сайте