Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кремнийорганические жидкости

При использовании кремнийорганической жидкости необходимо, так же как и при других жидкостях, удалять загрязнения путем предварительной промывки измерительной ячейки и устранять образование пузырьков между образцом и электродами.  [c.89]

Важным преимуществом фторорганических жидкостей по сравнению с кремнийорганическими является полная негорючесть и высокая дугостойкость (кремнийорганические жидкости, как и нефтяные масла, сравнительно легко загораются и горят сильно коптящим пламенем). Как и кремнийорганические соединения, фторорганические жидкости пока еще весьма дорогие.  [c.131]


Физико-химические константы кремнийорганических жидкостей [Л. 2, 38, 64, 65]  [c.25]

Кремнийорганические жидкости отечественного производства, представленные в табл. 1-8, по своим физико-химическим характеристикам соответствуют требованиям ГОСТ 18032-67 для ПМС и ГОСТ 13004-67 для ПЭС,  [c.29]

Вязкость кремнийорганической жидкости ПМС-25 по данным МЭИ [Л. 65]  [c.161]

Сглаженные значения вязкости ряда исследованных кремнийорганических жидкостей приведены в табл. 3-80.  [c.194]

Кремнийорганические жидкости применяют в гидравлических системах, вакуумных насосах, для пропитки и заливки конденсаторов, для заливки устройств, работающих при температурах от —60 до - -100°С, приборов и вибраторов осциллографов, а также для смазывания поверхностей резиновых изделий, трущихся по металлу.  [c.164]

Масла О КБ-122-3, ОКБ-122-4, ОКБ-122-5, ОКБ-122-14 и ОКБ-122-16 (ТУ МХП 4216—55) — кремнийорганические жидкости, обладающие необходимыми вязкостью, низкотемпературными свойствами и испаряемостью, в смеси с минеральными маслами, придающими смазывающую способность. Масла ОКБ-122 очень высокой чистоты, их применяют непосредственно для смазывания приборных подшипников и узлов трения при температурах от —60 до +120° С и для изготовления смазок ОКБ-122. Свойства масел приведены б табл. И.  [c.313]

Смазка ЦИАТИМ-221 (ГОСТ 9433—60). Кремнийорганическая жидкость, загущенная стеаратом кальция, стабилизированным ацетатом кальция с добавкой дифениламина. Для смазывания узлов трения и сопряженных поверхностей металл—металл и металл—резина, работающих при температуре от —60 до +150° С в агрессивных средах. Пригодна для длительного хранения.  [c.314]

ВНИИ НН-246. Однородная пластичная мазь, продукт загущения кремнийорганической жидкости пигментом, антифрикционная высокотемпературная высоковакуумная смазка (ГОСТ 18852—72). Предназначена для смазывания подшипников качения и зубчатых передач, работающих в интервале температур от —60 до +250° С, в вакууме 10 мм рт. ст. Вязкость, определяемая капиллярным вискозиметром при —40° С и среднем градиенте скорости деформации  [c.457]

Однако наибольший практический интерес представляют жидкости на основе сложных эфиров кремниевой кислоты и кремнийорганические жидкости, которые сочетают в себе высокотемпературные и низкотемпературные свойства.  [c.58]

Для упрочнения стекла наряду с термическим применяют и другие методы химический — обработка поверхности стекла различными химическими соединениями (растворами HF, Н3РО4, кремнийорга-ническими соединениями) термохимический—обработка нагретой выше температуры стеклования поверхности стекла расплавами солей (Li, Са, нагретыми полимерными кремнийорганическими жидкостями), а также комбинированные методы.  [c.395]


Метод двух сред. Указанный недостаток в значительной мере устраняется при использовании двух сред. В качестве первой среды может быть воздух, второй средой может, например, служить крем-нийорганическая жидкость. При неизменном расстоянии между электродами измерительной ячейки находят емкость Сх при заполнении ее первой средой (воздухом) без образца Сд — то же, но при вставленном образце и tgб2 —при заполнении ячейки второй средой (кремнийорганической жидкостью) без образца  [c.88]

Характерными свойствами фторорганических жидкостей явл5потся малая вязкость, низкое поверхностное натяжение (что благоприятствует пропитке пористой изоляции), высокий температурный коэффициент объемного расширения (значительно больший, чем у других электроизоляционных жидкостей), сравнительно высокая летучесть. Последнее обстоятельство требует герметизации аппаратов, заливаемых фторорганическими жидкостями. Фторорганические жидкости способны обеспечивать значительно более интенсивный отвод теплоты потерь от охлаждаемых ими обмоток и магнитопроводов, чем нефтяные масла или кремнийорганические жидкости. Существуют специальные конструкции малогабаритных электротехнических устройств с заливкой фторорганическими жидкостями, в которых для улучшения отвода теплоты используется испарение жидкости с последующей конденсацией ее в охладителе и возвратом в устройство кипящая изоляция) при этом теплота испарения отнимает от охлаждаемых обмоток, а наличие в пространстве над жидкостью фторорганических паров, в особенности под повышенным давлением, значительно увеличивает электрическую прочность газовой среды в аппарате.  [c.131]

Коррозионная среда (ЗЗ %-ный раствор Na l) понизила предел усталости незащищенной стали на 30 %, стали с дробеструйной обработкой на 26 %, а с алюминиевым металлизационным покрытием на 11 %. Меры, снижающие пористость покрытий - крацевание металлической щеткой, пропитка кремнийорганической жидкостью ГКЖ-94 - значительно повышают предел коррозионной усталости стали марки ОХ18Н10Т.  [c.84]

Для повьпиения защитной способности покрытий их обрабатывают различными составами, заполняющими структурные или случайные поры. Обработка хромового покрытия в пропитьтающих жидкостях при повышенных температурах (383—393 К) способствует удалению влаги из пор и повышению защитной способности хромовых покрытий. В качестве пропитьтающих составов используют пассивирующие растворы (нитраты, фосфаты, хроматы), ингибированные смазки (АМС-3, К-17), полимеризующиеся или поверхностно-активные вещества (льняное масло, клей БФ, гидрофобная кремнийорганическая жидкость ГКЖ-94, фторопласт, полиэтилен и др.).  [c.110]

Наибольшее применение получили синтётииеские жидкости на основе хлорированных углеводородов, что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью, повышенным значением диэлектрической проницаемости и относительно невысокой стоимостью. По зарубежным дачным, если цену нефтяного масла принять равной единице, то стоимость хлорированных углеводородов по отношению к маслу равна 4—10, кремнийорганических жидкостей — от 80 до 370. фторорганиче-ских жидкостей — до 1150. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено, хотя в эксплуатации еще имеется их значительное количество.  [c.199]

Радиационная стойкость алифатических полисилоксанов ниже, чем у полистирола и полиэтилена, и аналогична стойкости полиамидов. Наличие фенильных групп в силиконовой цепи увеличивает радиационную стойкость материалов, а наличие метильных групп одновременно увеличивает гибкость. Кремнийорганические смолы обычно содержат много фенильных групп, и радиационная стойкость их достаточно хороша. Кремнийорганические жидкости по сравнению со смолами имеют Д1еньшук> радиационную стойкость. Однако и в этом случае наличие фенильной  [c.62]

Исследовались реологические свойства двух противокорро-зионнЕД составов первый содержит 78 вес.алюминия (порошок d S 50 мЕСм) и 22 вес. загущенной кремнийорганической жидкости втЬрой - 76 вво.% алюминия и 24 вес. загущенной кремний-органической жидкости.  [c.70]


Жидкие кремнийорганические соединения используются в качестве теплоносителей, различных масел (смазочных, гидравлических, амортизационных и др.), жидких диэлектриков и т. д. Следует отметить, что кремнийорга-ническ ие соединения в качестве теплоносителей применяются только в жидкой фазе, поскольку пары этих соединений нестойки. Кремнийорганические жидкости нетоксичны, взрывобезопасны и не обладают коррозионной активностью. Низкая температура плавления и достаточная термическая стойкость определяют возможность применения некоторых кремнийортанических жидкостей в качестве теплоносителей при температурах от —70 до 370°С. Существенным недостатком этих теплоносителей является их высокая стоимость.  [c.17]

Анализ показал, что для всех исследованных кремнийорганических жидкостей теплоемкость повышается с температурой по линейному закону. Температурная зависимость теплоемкости Ср описывается уравнением (3-33) с погрешностью 0,5%. В табл. 3-51 приведены значения постоянных коэффициентов уравнения (3-33). Как видно из табл. 3-51, наблюдается определенная закономерность в расположении политерм каждого ряда исследованных снлоксанов. Так, политермы ПЭС расположены выше ПМС температурные коэффициенты теплоемкости уменьшаются с увеличением количества атомов кремния в молекуле.  [c.154]

В работе [Л. 62—64]- на капиллярном вискозиметре системы Ю. А, Пинкевича исследована вязкость поли-органсилоксановых жидкостей в интервале температур 20—260 °С. При этом в исследованном интервале температур вязкость измерялась набором вискозиметров с диаметрами капилляров 0,6 0,8 1,0 1,2 2 мм. В качестве термостатирующей жидкости до 120 °С использовалось минеральное масло, а при более высоких температурах— жидкость марки ПМС-100. Опытные данные по вязкости ряда исследованных кремнийорганических жидкостей представлены в та бл. 3-78, а данные, характеризующие основные физико-химические свойства (р а, д,  [c.191]

Следует отметить, что значения вязкости, приведенные в табл. 3-78 и 3-80, для большинства кремнийорганических жидкостей являются пока единственными, а поэтому не представляется возможным сравнить их с результатами других независимых измерений. Для поли-этилсилоксановых жидкостей различных марок имеются независимые измерения в области низких температур [Л. 38, 64]. При этом наблюдаются некоторые расхождения, которые, по-видимому, объясняются различием полимерного состава исследованных жидкостей. Так, для ПЭС-1 при 20 °С данные [Л. 64] на 177о выше, чем у авторов [Л. 38].  [c.194]

Широкое применение имеют антифрикционные смазки ЦИЛТИМ-201 и ЦИАТИМ-221. Смазка ЦИАТИМ-201 представляет собой минеральное масло, загущенное литиевым мылом. Она может быть использована при температуре 100°С. Смазка химически стабильна, но не рекомендуется для работы в контакте с цветными сплавами. Смазка ЦИАТИМ-221 используется в широком интервале температур (до 150°С) и представляет собой кремнийорганическую жидкость, загущенную лптиевым мылом. Смазка не действует на резину, поэтому ею можно смазывать резиновые манжеты. Смазка ЦИАТИМ-221 стойка в парах кнслот.  [c.37]

Большие перспективы для использования в арматуростроении имеет смазка ВНИИИИ-226, представляющая собой кремнийорганическую жидкость с дисульфидом молибдена —двусернистым молибденом MoSj. Дисульфид молибдена в окисляющих средах не стоек, так как окисляется содержащаяся в нем сера. Такая смазка может значительно улучшить работу резьбовых соединений шпин-дель-ходовая гайка, уменьшить силу трения и износ деталей при температуре до 230°С.  [c.37]

Пастообразные концентраты. Суспензии с высокой концентрацией MoSa в различных жидкостях. Марка ВНИИ НП-232 (ГОСТ 14068—68) на основе индустриального масла 20. Для применения в зубчатых передачах, шарнирах, резьбах при температуре до 100° С, в качестве материала для приработки механизмов. Применяется для смазывания металлургического оборудования вместо обычных смазок, хотя не прокачивается по мазепроводам. ВНИИ НП-225 — на кремнийорганической жидкости для резьбовых соединений, между поверхностями при температуре от —30 до +350° С. ВНИИ НП-210 — на кремнийорганической жидкости с добавками графита и стабилизатора для подшипников качения со средними и высокими скоростями при температуре от —30 до +400° С.  [c.315]

Пластичные смазки — отличаются от предшествующих меньшей концентрацией MoS . Марка ВНИИ НП -242 — на минеральном масле, с добавкой литиевого мыла. Для подшипников качения, работающих с большими нагрузками при температуре от —40 до +110° С (120° С — кратковременно). ВНИИ НП-214 — на кремнийорганической жидкости с добавкой кальциевого мыла. Для подшипников качения авиационных приборов, ра-диоборудования и других аппаратов, рабо-  [c.315]

Кремнийорганические жидкости (силиконовые масла) — оргапосилоксано-вые полимеры невысокой молекулярной массы, способные сохранять свойства жидкости в широком интервале температур. По внешнему виду они соответствуют нашим представлениям о минеральных маслах. Наибольшее распространение получили жидкости, приведенные ниже.  [c.445]

ВНИИ НП-225 (ГОСТ 19782—74) — однородная паста черного цвета на основе молибденита высокой чистоты МВ41 и кремнийорганической жидкости ПФМС-4. Предназначена для защиты резьбовых соединений при температуре от —60 до +250° С, для алюминиевых анодированных сплавов и до -1-350° С для нержавеющих сплавов, а также для смазки тяжело нагруженных механизмов, работающих при температуре от —40 до +300° С.  [c.457]

Система 14 охлаждения стенда обеспечивает поддержание температуры натрия в основном контуре на требуемом уровне, а также охлаждение натрия перед холодными ловушками и индикаторами окислов, электромагнитных насосов, арматуры, узлов уплотнения испытываемого насоса, электропривода насоса, системы смазки подшипников ГЦН. Учитывая опасные последствия взаимодействия натрия с водой (как при попадании воды в контур стенда из-за возникновения течи в охлаждающих устройствах, так и в случае вытекания натрия из контура при разуплотнении стенда), ее применение в качестве охлаждающей среды на стенде недопустимо [17]. Целесообразно в качестве охлаждающей среды в замкнутых системах охлаждения применять эвтектический сплав натрий—калий или кремнийорганическую жидкость (полиэтил-силоксановая ПЭС-13)—силикон [18]. Отвод тепла от эвтектики по соображениям безопасности осуществляется в теплообменнике 2, охлаждаемом воздухом, а силикон можно охлаждать водяным холодильником, вынесенным из помещения стенда. Система охлаждения эвтектикой выполняется герметичной, с расширительной емкостью, соединения трубопроводов — сварными. В разомкнутых системах охлаждения в качестве охлаждающей среды применяется воздух. Использование воздушной разомкнутой системы охлаждения существенно упрощает конструкцию спенда и его обслуживание. Но охлаждаемые воздухом холодиль -ники требуют более развитых со стороны воздуха поверхностей  [c.254]


Демпфирование упругой системы акселерометра рассматриваемой конструкции является жидкостным. В качестве демпфирующей обычно применяется кремнийорганическая жидкость типа ПМС. Для обеспечения критического или близкого к нему значения коэффициента демпфирования, являюш егося оптимальным 160], необходимо правильно выбрать вязкость демпфирующей среды. Учитывая большое число влияющих факторов, сложность и нелинейность зависимостей от них коэффициента демпфирования, предлагается полуэмпирическая методика определения оптимального значения вязкости демпфирующей жидкости. Методика иллюстрируется на рис. 10.4 и заключается в следующем. Вначале с помоп] ью вибростенда экспериментально определяется резонансная частота изготовленной незадемпфированной упругой системы акселерометра. Далее снимается экспериментальная зависимость величины отклонения А реальной АЧХ от идеальной на резонан- сной частоте при различных, заранее известных значениях вязкости V демпфирующей жидкости. Причем вязкость постепенно увеличивается от значений, обеспечивающих малый коэффициент демпфирования, до значений с коэффициентом демпфирования больше критического. Следует отметить, что каждый раз уточняется резонансная частота, поскольку при увеличении вязкости ее значения смещаются в сторону понижения частоты вследствие эффекта присоединенной массы [60]. Зависимость А = / (v) имеет вид, показанный на рис. 10.4, а. Оптимальное значение вязкости -Vo обычно получается экстраполяцией в области значений Л О (рис. 10.4, б). Погрешность оценивания Vq определяется количеством экспериментально полученных точек и точностью измерения. Полученное значение Vq используется для выбора демпфирующей жидйости в случае, если оказывается достаточно близким к одному из стандартных значений вязкости. В противном случае Vo применяется совместно с номограммой для определения процентного состава двух или более жидкостей с различными значениями вязкости, обеспечивающими при смешивании между собой требуемую вязкость. После получения нужной вязкости упругая система акселерометра демпфируется, и затем снимаются па вибростенде все основные характеристики акселерометра — амплитудная характеристика, АЧХ и коэффициент поперечной чувствительности. Изготовленные и задемпфированные по предлагаемой методике акселерометры имели неравномерность АЧХ, не превы-  [c.175]

Конструктивная схема прибора показана на рис. 2.32. Измерительным элементом является механотрон к свободному концу штыря крепится плавающий элемент, выполненный в виде прямоугольной площадки. Элемент монтируется в головке прибора заподлицо с обтекаемой поверхностью и может перемещаться силой трения на расстояние, не превышающее заднего зазора,— 0,3 мм (передний и боковые зазоры составляют 0,1 мм). Подвеска прибора выполнена пружинной, а соответствующие детали заштифтованы, что обеспечивает их температурную деформацию вдоль главной оси прибора. Система крепления и перемещения механотрона позволяет с помощью микрометрического винта и сильфона компенсировать вертикальные температурные расширения и перемещения площадки. Полость, в которой расположены пружина и внутренняя часть сильфона над мембраной механотрона, уплотнена и выполнена разгруженной. Это пространство заполнено кремнийорганической жидкостью, препятствующей попаданию-влаги на мембрану. Прибор крепится к стенке, в которой выполнено углубление для крышки, закрывающей плавающий элемент для фиксации нулевого отсчета  [c.66]

Кремнийорганические жидкости имеют более низкий модуль объемной упругости, чем жидкости минерального происхождения. Кроме того, этот модуль в большой степени зависит от температуры. Так, например, модуль объемной упругости большинства минеральных жидкостей гидросистем равен в нормальных условиях приблизительно 17 000 кПсм и уменьшается при температуре 315° G до 10 500 кГ/см , тогда как для крем-  [c.58]

Вторым классом распространенных кремнийорганических жидкостей являются жидкости на основе эфиров кремниевой кислоты. Они имеют низкую летучесть, очень хорошие вязкостно-температурные свойства, отличаются высокой термической стабильностью. Но использование этих жидкостей помимо высокой стоимости и дефицитности затрудняет подверженность их гидролизу, особенно в присутствии щелочей. В присутствии воды они распадаются с образованием геля и при высоких температурах выделяют твердые продукты двуокиси кремния. По стойкости к окислению и смазывающим свойствам эфиры кремниевой кислоты близки к углеводородным жидкостям на нефтяной основе, поэтому в них необходимо вводить антиокислительные и противоизносные присадки. При наличии присадок такие жидкости удовлетворительно работают при температурах до 260 С. Уплотнения из нитрильных резин при таких высоких температурах неработоспособны, кроме того, они не могут длительно храниться в среде жидкостей на основе кремнийорганических эфиров. В этих жидкостях работоспособны уплотнения из резин на основе фторорганических (СКФ) или фторсили-коновых каучуков, однако первые не обеспечивают работу при температурах ниже —25° С, а вторые не обладают необходимой прочностью. Резины на основе этих каучуков дороги и дефицитны. Смешением нескольких различных продуктов часто удается получить жидкость, превосходящую по своим свойствам любой из ее ксмпонентов.  [c.119]


Смотреть страницы где упоминается термин Кремнийорганические жидкости : [c.104]    [c.104]    [c.200]    [c.96]    [c.101]    [c.90]    [c.302]    [c.139]    [c.315]    [c.473]    [c.57]    [c.84]    [c.323]    [c.324]    [c.34]    [c.224]    [c.199]   
Смотреть главы в:

Антифрикционные пластичные смазки  -> Кремнийорганические жидкости


Тепловая микроскопия материалов (1976) -- [ c.44 ]

Химия и радиоматериалы (1970) -- [ c.126 ]

Справочник по электрическим материалам Том 1 (1974) -- [ c.107 , c.137 ]



ПОИСК



Жидкости: конструкционные 316, кремнийорганические 164, полиметилсилоксановые

Кремнийорганические жидкости как добавки к бетонам

Кремнийорганические жидкости специального назначения

Кремнийорганические масла и жидкости

Лак кремнийорганический

Общая характеристика кремнийорганических жидкостей

Определение критических параметров кремнийорганических жидкостей

Определение молекулярной массы кремнийорганических жидкостей

Определение показателя преломления кремнийорганических жидкостей

Определение температурных зависимостей кинематической вязкости кремнийорганических жидкостей

Определение температурных зависимостей плотности кремнийорганических жидкостей

Определение температурных зависимостей поверхностного натяжения кремнийорганических жидкостей

Определение температурных зависимостей температуропроводности и критерия Прандтля кремнийорганических жидкостей

Определение температурных зависимостей теплоемкости кремнийорганических жидкостей

Определение температурных зависимостей теплопроводности кремнийорганических жидкостей

Определение температурных зависимостей упругости паров кремнийорганических жидкостей

Определение теплоты парообразования кремнийорганических жидкостей

Определение характерных температур кремнийорганических жидкостей

Основные физические свойства и эксплуатационные характеристики кремнийорганических жидкостей при стандартных условиях

Теоретические основы расчета термодинамических характеристик и теплофизических свойств кремнийорганических жидкостей

Теплофизические свойства кремнийорганических жидкостей

Теплофизические свойства кремнийорганических жидкостей в зависимости от температуры

Электроизоляционные жидкости на основе кремнийорганических (полиорганосилоксановых) соединений



© 2025 Mash-xxl.info Реклама на сайте