Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эксплуатация полимеров

Для эксплуатации полимеров наибольшее значение имеют область вынужденной эластичности, в которой полимер, обладая высокой прочностью, е является хрупким, и область высокоэластической деформации, позволяющей использовать полимеры как эластомеры (резины). Область, лежащая выше температуры пластичности используется для переработки полимеров в изделия.  [c.57]

Максимальные температуры длительной эксплуатации полимеров  [c.270]


Принцип минимизации теплоты трения. Герметизирующее устройство необходимо проектировать таким образом, чтобы при трении генерировалось как можно меньше теплоты. Температура эластичного элемента манжеты в процессе работы не должна превышать не только критическую температуру но и температуру, допустимую при эксплуатации манжеты в определенных условиях. Как правило, предельно допустимое значение температуры полимера устанавливают на основе анализа статистических данных по эксплуатации полимера [13, 14 и 133].  [c.75]

В последнее время в практике эксплуатации полимеров при умеренных температурах было обнаружено явление статической усталости. Это явление оказалось универсальным, т. е. присущим всем твердым полимерам. Разрушение в этом случае представляет собой необратимый кинетический процесс накопления внутренней повреждаемости материала, ускоряемый температурой.  [c.244]

На основе единого подхода, объединяющего химическую структуру полимеров и основные положения теорий пластичности в упругости, можно установить комплексные масштаб-вые изменения, происходящие в поли мерных материалах, в отличие от предыдущих теоретических исследований, не выходящих за рамки ближнего конфигурационного порядка, прогнозировать их физико-механические свойства в реальных условиях эксплуатации.  [c.193]

Для сохранения исходных свойств полимеров при переработке и в эксплуатации в их состав вводятся стабилизаторы.  [c.87]

Столь же важную роль играют стабилизаторы полимера, повышая его стойкость против совместного действия света, кислорода и других внешних факторов в условиях эксплуатации [42—45].  [c.88]

Проблемы, связанные с состоянием поверхности раздела, свойственны не только композитам с металлической матрицей. Для улучшения состояния поверхности раздела в стеклопластиках стеклянные волокна подвергают аппретированию. Известно, что оптимальное аппретирование является нелегким компромиссом между рядом требований, таких, как защита отдельных нитей от механических повреждений, хорошая связь стекла с полимером, сохранение этой связи в условиях эксплуатации, особенно в присутствии влаги. Оптимизация состояния поверхности раздела в композитных материалах с металлической матрицей требует, по-видимому, аналогичных компромиссных решений. Требования к поверхности раздела в металлических композитных материалах не менее жестки, чем для стеклопластиков. Так, уже упоминалась химическая несовместимость многих сочетаний матрица — волокно вследствие как недостаточной, так и излишней реакционной способности (в первом случае имеются в виду системы, где механическая связь компонентов не достигается из-за отсутствия соот-  [c.12]


Мономерные кремниевые соединения совместимы почти со всеми органическими полимерами термореактивными смолами, эластомерами и термопластами. Неорганический наполнитель или упроч-нитель может быть в виде волокон или частиц. Силан используется для предварительной обработки субстрата либо вводится непосредственно в полимер (метод интегральной смеси). В последнем случае он мигрирует к поверхности субстрата в процессе обычного смешения и при эксплуатации [36, 42].  [c.143]

При исследовании биоповреждений металлоконструкций имеются определенные методологические трудности. Во-первых, био-повреждения материалов микроорганизмами носят специфический характер. В отличие от других видов повреждений в них непосредственно участвуют живые организмы, т. е. приходится иметь дело с биологическими объектами и процессами. Исследования осложняются из-за видового многообразия микроорганизмов и взаимного влияния их друг на друга как положительного, так и отрицательного (симбиоз, комменсализм, конкуренция, антагонизм и т. п.), а также вследствие сложных процессов, протекающих внутри самого микроорганизма (метаболизм, анаболизм, катаболизм). Кроме того, нестабильность некоторых полимерных материалов и влияние их на микроорганизмы еще более усложняет проблему. Материалы конструкций техники и сооружений, а также условия эксплуатации последних, в особенности температурные факторы, влияют на развитие микроорганизмов и вызывают их эволюцию. Выявлено, что отдельные полимеры ЛКП и некоторые вещества (амины, кетоны, окислы азота и пр.), а также пониженная температура (-Ь4...-Ьб °С), искусственная аэрация и другие факторы определяют видовой состав (отбор) и адаптацию наиболее жизнеспособных микроорганизмов. В процессе отбора и адаптации повыщается их агрессивность в отношении материалов, на которых они образуют колонии.  [c.47]

Причина усадки пленки может быть различной она может возникать вследствие испарения растворителя из пленки, протекания в ней реакции полимеризации, образования надмолекулярных структур и т. п. В процессе эксплуатации пленки усадка может появиться вследствие деструкции полимера, испарения пластификатора, поглощения влаги и других факторов.  [c.82]

В настоящее время проведена широкая экспериментальная проверка расчетных соотношений (1.7) и (1.8) как на лабораторных образцах, так и па натурных деталях машин, испытанных на стендах и в условиях эксплуатации. Сопоставление расчетных и экспериментальных данных по интенсивности износа показало [43], что корреляция значений Д с коэффициентом пропорциональности, близким к единице, имеет место в интервале Расхождение между экспериментальной и расчетной интенсивностями износа с вероятностью 95% не превышает трех раз и лишь в отдельных случаях достигает десяти раз. Аналитическая оценка интенсивности износа, основанная на представлении об усталостном разрушении поверхностей, была применена к самым различным классам материалов резинам, резино-металлическим уплотнениям, работающим всухую, полимерам, металлам, графитам, самосмазывающимся материалам. Эта теория была распространена для расчета износа при наличии свободного абразива в контакте [52]. Интересно отметить, что понятие усталостного износа как вида разрушения, при котором материал подвергается повторному действию сил, приводящих к накоплению в нем повреждений, в настоящее время используется и для анализа процесса, который классифицируется как адгезионный износ [53]. Это свидетельствует об известной общности представления об усталостном разрушении поверхностей трения.  [c.20]

Одним из серьезных недостатков стеклонаполненных композиционных материалов является низкая герметичность. Этот недостаток ограничивает область применения изделий из этих материалов. Для обеспечения герметичности изделий, используемых для транспортировки или хранения жидких и газообразных продуктов, а также изделий, работающих при избыточном внутреннем и внешнем давлении, производится плакирование внутренней или внешней поверхности изделия термопластичными полимерами. Такая плакировка может осуществляться несколькими способами использование для герметизации трубы из термопласта, которая одновременно является оправкой при намотке труб из стеклопластика, нанесение полимерного покрытия в электростатическом поле и центробежным методом. Наиболее характерным дефектом такого типа изделий являются расслоения на границе плакирующего слоя и основного материала изделия. Кроме того, в процессе эксплуатации таких изделий (нагревание, охлаждение, деформации), вследствие различия коэффициентов температурного расширения, а также упругих характеристик, могут возникать дополнительные расслоения и трещины в пограничной области.  [c.16]


Образование сквозных трещин в защитных полимерных покрытиях при контакте с химически активными средами является частным случаем распространенного процесса растрескивания покрытий под действием механических напряжений и агрессивных сред — коррозионного растрескивания. Коррозионное растрескивание полимеров имеет место при одновременном действии на материал растягивающих напряжений и агрессивной среды. Начинается процесс с зарождения дефектов и их постепенного развития в одну или несколько магистральных трещин. Дефекты в полимерном покрытии могут возникать в процессе изготовления или в процессе эксплуатации, например в результате химической деструкции.  [c.48]

Опыт использования пластмасс в качестве уплотняющих материалов показал, что полимеры могут быть с успехом применены не только в клапанных устройствах, но и для уплотнений соединения трубопроводов. Причем исследования, проведенные и описанные ниже, показали, что полимерные прокладки определенной формы, конструкция которых отличается от обычных металлических и резиновых прокладок, обладают рядом преимуществ перед ними в условиях эксплуатации транспортных машин.  [c.86]

Термическая деструкция происходит при нагревании полимера, когда вследствие колебаний тепловой энергии в некоторых местах системы энергия теплового движения становится соизмеримой с энергией химической связи, и связь разрывается. Механическая деструкция происходит под влиянием различных механических воздействий, которым подвергается полимер при технологической переработке и при эксплуатации изделий. При механической деструкции происходит разрыв цепи молекул полимера.  [c.126]

ЛИНЗ При различных температурах приводит к некоторому изменению их основных размеров. Так, при переходе температур от — 250 до +300 К внешний диаметр линз увеличивается на 2,5 %, а высота на 1 %. Однако на работоспособность линз в выбранной конструкции соединения это не влияет. Все они обеспечивают герметичность, и изменение размеров не выходит за пределы допусков 2) чередование в широких пределах режимов хранения, работы и транспортировки для уплотнительных линз из полимеров не влияет на их работоспособность 3) полимерные уплотнители мало подвержены процессу старения в условиях закрытых соединений, причем чередование режимов хранения, эксплуатации и транспортировки не влияет отрицательно на работоспособность соединения, следовательно, полимерные уплотнительные линзы могут быть применены в магистральных трубопроводах и аппаратуре пневмогидравлических систем, находящихся длительное время на хранении 4) полимерные втулки, линзы, клапаны, которые работают в условиях, исключающих попадание лучей, могут обеспечить безотказную работу агрегатов и узлов в течение длительного времени (непрерывная работа стендов лаборатории с 1962 по 1972 г.) 5) при длительных хранениях на  [c.132]

Сложнее обстоит дело с бронированными трубопроводами. Любое компенсационное устройство воспринимает изменения длины трубопровода в пределах температурного расширения бронирующего материала (стали, стеклопластика и др.). Избыточное изменение длины фторопласта вызывает напряжения в отрезках трубы, вследствие чего происходят сдвиги фторопласта относительно брони и изгибы отбортовки. При длительной эксплуатации бронированных трубопроводов в большом диапазоне температур наблюдаются случаи появления трещин на отбортовке. Однако такие явления не часты, видимо, потому, что значительная часть температурного расширения полимера компенсируется его хорошей податливостью.  [c.148]

Существенным недостатком этих покрытий является относительно низкая температура эксплуатации (80—90° С), выше которой покрытие вследствие кристаллизации полимера становится хрупким и теряет адгезию.  [c.158]

Испытание на теплостойкость. Определение температурных границ работоспособности полимерных материалов основано на том, что температурные зависимости модуля упругости позволяют выделить основные физические и фазовые состояния полимера, существенные для эксплуатации материала.  [c.142]

Для сравнительной оценки термостабильности полимерных стекол и определения верхних температурных пределов их переработки, а в некоторых случаях и эксплуатации снимают кривые потери веса на образцах размером 20 X 20 X 10 мм при продолжительности термообработки 1—5 ч (рис. 12). Для стекол СОЛ, СТ-1, 2-55 вблизи температуры перехода в вязко-текучее состояние наблюдается увеличение потери летучих веществ и на стеклах появляются пузыри, что свидетельствует о начале деструкции полимеров. Поэтому температуры перехода в вязко-текучее состояние принимают за верхние температурные пределы переработки и применения указанных органических стекол.  [c.133]

При этом в группу клеев на основе термопластичных полимеров входят преимущественно отвержденные клеящие составы (полиакрилаты, полиизобутилен, поливинилхлорид, поливинилацетат и т, д.), которые благодаря сравнительно невысоким прочностным характеристикам, в особенности в условиях эксплуатации при повышенных температурах, применяются главным образом для несиловых соединений металлов и неметаллических материалов.  [c.267]

Как показали специальные исследования [22], посредством термообработки можно достичь стабильного значения температурного коэффициента линейного расширения кристаллического полимера на всем температурном интервале эксплуатации полимерного подшипника, что имеет большое значение для расчета изменения сборочного зазора в сопряжении вал — полимерный подшипник при нагреве в процессе эксплуатации. Значение этого коэффициента становится независимым от толщины отливаемой детали и режима ее изготовления.  [c.45]

Например, выявлены закономерности, оценивающие типичные процессы коррозии как функции времени, определяется скорость развития усталостных трещин, получены данные для оценки протекания процессов ползучести металлических материалов, имеются закономерности, описывающие изменения свойств масел в процессе их эксплуатации и коэффициента трения при работе сопряжения, коробление отливок от остаточных напряжений, изменение во времени свойств полимеров и др.  [c.92]


Материал части I справочника содержит номенклатуру выпускаемых в настоящее время антифрикционных материалов на основе полимеров, их сравнительную характеристику с точки зрения использования в работающих при недостаточном смазывании подшипниковых узлах машин и приборов проверенные экспериментальным путем алгоритмы расчета узлов трения результаты расчетов на ЭВМ ЕС в виде зависимостей их теплоотводящей способности, температурного поля, требуемого сборочного зазора и допустимых режимов эксплуатации от конструктивного исполнения узлов и свойств используемых материалов рекомендации по применению термопластичных подшипников скольжения и основным направлениям улучшения их работоспособности.  [c.8]

Таким образом, основное воздействие на процессы трения и изнашивания антифрикционных полимерных материалов оказывает температура, влияющая и на физико-механические свойства самих материалов, и на интенсивность протекания физико-химических процессов в зоне контакта полимера с металлом. Поэтому такое внимание уделяется расчетам температуры эксплуатации подшипниковых узлов, которая определяется величинами теплообразования на поверхностях трения и теплоотводом от них через вал и корпус узла.  [c.67]

Рис. 33.8. Зависимость температуры длительной эксплуатации полимеров от их термоокислительной сюйлосги Рис. 33.8. <a href="/info/59874">Зависимость температуры</a> <a href="/info/737900">длительной эксплуатации</a> полимеров от их термоокислительной сюйлосги
Во многих случаях в композицию вводят стабилизаторы, предохраняющие пластические массы от разложения в процессе их переработки и под действием тепла или света при эксплуатации, красители и другие добавки. Однако имеются пластические массы, которые состоят только из одного связующего вещества — полимера. Таковы, например, полиэтилены, фторопласты, поли-стнролы, полпамидные смолы и т. д. В этом случае понятие пластическая масса и связующее совпадают.  [c.391]

При эксплуатации изделий на основе полимеров часто происходит постепенное ухудшение их свойств, связаное с гем, что в результате воздействия различных факторов происходит распад макромолекул (деструкция). Помимо ухудшения физико-механических свойств наблюдается снижение химической стойкости полимеров. Указанное яв-леиив носит название "старение.  [c.33]

Практика эксплуатации современных машин и сооружений при экстремальных условиях их работы, происходящих зачастую при высоких уровнях напряжений и температуры, свидетельствует о наличии ярко вырая енной временной зависимости процесса разрушения. Во многих случаях полному разрушению тела предшествует длительное устойчивое развитие трещины, причем величина этого периода может составлять значительную часть долговечности элемента конструкции. Такое длительное разрушение, происходящее нередко при постоянных внешних нагрузках, особенно характерно для полимеров, композитных материалов и металлов при высоких температурах. Причиной медленного роста трещины в таких случаях обычно являются ползучесть материала и накопление рассеянных поврея дений.  [c.299]

Детали тяжелонагруженных узлов трения изготовляют из композиционных материалов на основе ароматического полиамида типа фени-лона. При этом для эксплуатации в условиях малых скоростей и больших давлений предпочтительны полиамиды с высокой молекулярной массой, в условиях повышенных скоростей и малых контактных давлений - полиамиды с малой молекулярной массой. Одной из причин невысокого коэффициента трения фенилона является наличие широкого температурного интервала вынужденной эластичности, обусловленной достаточно большой рыхлостью структуры полимера. Минимальное значение/наблюдается при температуре 50-70°С независимо от ско-  [c.30]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Политетрафторэтилен (ПТФЭ) I— F — СР. —] в СССР выпускается под названием фторопласт-4 (торговая марка) и получается полимеризацией тетрафторэтилена Fj Fj. Степень кристалличности ПТЭФ около 90 % (при температуре эксплуатации 50—70%). Кристаллическая структура нарушается при температуре около 327 °С, после чего полимер переходит в высокоэластическое состояние, сохраняющееся вплоть до температуры разложения (около 415 "С). Рабочая температура от —269 до 260 °С.  [c.207]

При нижеперечисленных затрудненных условиях эксплуатации должны применяться особостойкие изоляционные материалы в особо агрессивных средах, при высоких температурах и высоких давлениях. Среди органических изоляционных материалов, выдерживающих очень высокие химические нагрузки, можно назвать фторированные пластмассы (полимеры), например политетрафторэтилен (тефлон). При повышенных температурах и давлениях применяют керамические изоляционные материалы, например фарфоровые изоляторы или стеклянные проводки для ввинчиваемых анодных заземлителей, рассчитанных на высокие давления. У керамических материалов необходимо принимать во внимание хрупкость и различие в коэффициентах линейного термического расширения.  [c.207]

В реальных условиях эксплуатации кораблей и сооружений обрастания представляют биоценоз многих организмов — они многослойны. В результате борьбы за существование нижние слои погибают, обеспечивая условия жизни для верхних слоев. В нижнем слое обычно расположены микроорганизмы, затем балянусы, гидроиды, на них мшанки, а сверху — мидии. Обрастанию подвержены многие материалы конструкций полимеры, ЛКП, стекло, металлы. Предпочтительно ими повреждаются шероховатые поверхности, однако и полированные через 7... 15 сут. также заселяются обрастателями.  [c.45]

К методам защиты ЛКП от биоповрелщений относят улучшение физико-механических и специальных свойств покрытий введение в состав покрытия компонентов, устойчивых к воздействию микроорганизмов применение биоцидов в условиях производства и ремонта техники на стадии приготовления лакокрасочных смесей (создание биоцидных ЛКП) создание ЛКП на основе био-стойких полимеров осуществление дополнительной защиты поверхности машин в условиях эксплуатации.  [c.78]


На основе частично омыленного сополимера А-15-0, отвержденного продуктами 102Т или ДГУ, выпущена кислотостойкая эмаль ХС-791. При взаимодействии гидроксильных групп сополимера А-15-0 с изоцианатными группами отвердителя происходит сшивание цепей полимера с образованием трехмерной структуры. Это позволяет получать покрытия, обладающие хорошей водо- и химической стойкостью. Эмаль была испытана в натурных условиях при защите поверхностей аккумуляторных помещений судов. Было получено пятислойное покрытие, состоящее из четырех слоев эмали ХС-791 и одного слоя грунтовки ВЛ-023. Покрытие в процессе эксплуатации показало хорошую стойкость.  [c.84]

Однако важно знать не только как изменяются механические свойства пластмасс в зависимости от их старения (в аппарате искусственной погоды и при атмосферном хранении), но и как отразится старение полимеров на их работоспособности. Для этого необходимо проводить испытания уплотнителей на работоспособность в различных режимах эксплуатации транспортировка системы на большие расстояния, работа по программе, длительное хранение. Рассмотрим результаты такого вида испытаний соединений с капролоновыми прокладками. Были испытаны шесть партий уплотнений. Каждая партия состояла из 24 линз. Методика испытаний предусматривала выдержку партии уплотнительных линз на открытом воздухе, статические испытания давлением 250-10 Н/м при нормальной температуре, при температуре 325 и 223 К, а также вибрационные испытания, имитирующие транспортировку агрегата по трассам с различным дорожным покрытием. Одна из шести партий линз хранилась в течение года на открытом воздухе. У всех линз за испытуемый период раз в месяц измерялся внешний диаметр, внутренний диаметр и высота. По этим параметрам были подсчитаны средние значения по месяцам, которые сведены в табл. 13. Перед каждым замером на линзах проверялось наличие трещин, царапин, а также после замеров каждая линза спрессовывалась в закрытом ниппельном соединении на ручном насосе давлением Р = 300-10 Н/м в течение 5 мин. Во время испытаний температура воздуха изменялась от + 300 К (в июле, августе) до 250 К (в январе, феврале) влажность воздуха была в пределах 40—100%.  [c.131]

Следует иметь в виду, что в процессе эксплуатации происходят циклические сдвиги фторопластовой оболочки относительно жесткой. Однако это нежелательное явление лишь в редких случаях вызывает излом футеровки в предфланцевом поясе. Температурные деформации полимера и металла в какой-то мере компенсируются податливостью первого и геометрической формой изделия, не вызывая опасных местных перенапряжений. При желании связать цельнопрессованную оболочку с армирующим кожухом последняя изготовляется двухслойной, с пористым подслоем и приклеивается.  [c.108]

Срок службы полимерных материалов, в которых происходит старение, связанное с процессами разложения, устанавливается по предельно допустимому изменению основных свойств. Срок службы полимера, старение которого обусловлено процессами термодеструкции, можно оценить температурно-временным пределом использования материала (температурн о-временной зависимостью необратимого изменения свойств). Так, срок службы иолисилоксана в условиях, в которых происходит термодеструкция, может составлять 1000 ч при температуре 250° С или 10 лет при температуре 180° С при более длительной эксплуатации материал становится хрупким, в нем образуются трещины. Однако никакой конкретный температурно-временной предел в отдельности не является достаточно полной характеристикой срока службы, так как требуемые свойства всегда определяются специфическими условиями применения полимера [66].  [c.20]

При изучении влияния центробежных сил на течение аномальновязкой жидкости исследуются гидродинамические характеристики и теплообмен неньютоновских жидкостей — растворов и расплавов полимеров. На основании этих исследований определяются оптимальные условия стационарного и пульсационного течения реологических сред в каналах, являющихся рабочими частями машин и аппаратов химической и добывающей промышленности. Для оптимизации условий течения рассматриваются вопросы управления гидродинамическими параметрами потока. Исследования влияния на поток жидкости поля действия центробежных сил позволили разработать новую алмазную пилу, заполненную жидкостью. В этом инструменте снижены температурные напряжения в алмазоносном слое, благодаря чему повышается его стойкость. Помимо этого наличие в инструменте двухфазной среды металл — жидкость снизило уровень звукового давления, что улучшает санитарные условия труда рабочих при обработке различных материалов. В настоящее время проводятся конструкторско-технологические работы по созданию алмазной пилы с улучшенными характеристиками за счет эффективного использования жидкости для снятия температурного напряжения и уменьшения звукового давления в процессе ее эксплуатации.  [c.111]

Исследована возможность применения модифицированных связок в качестве электроизоляционных покрытий. Хорошими технологическими свойствами, как показали исследования, обладают композиции на основе кремнийорганических полимеров, наполненных окислами или глинистыми минералами. Установлено, что при длительной эксплуатации кремнийорганических покрытий в условиях действия повышенных температур наиболее целесообразно использовать в качестве наполнителей глинистые минералы со структурным мотивом 2 1 и слоисто-ленточного строения (пальиорскит, монтмориллонит). Такие системы обладают высокой термоэластичностью и хорошими диэлектрическими свойствами.  [c.147]

Однако каждое ИЗ таких испытаний в отдельности, и даже все они в совокупности, не могут имитировать работу любых изделий. Как справедливо указывает Шаламах [14], возможности лабораторной оценки истираемости материалов для предсказания износа изделий в условиях эксплуатации весьма опраничены, а корреляция между данными лабораторных и эксплуатационных испытаний условна даже при одинаковой жесткости испытаний такая корреляция вообще отсутствует, если сравнивать разные полимеры.  [c.111]

ЭТИХ материалов состоит в частичной сшивке молекул полимера молекулами силикона. Эти материалы, выпускаемые под маркой Римпласт, отличаются от исходного полимера меньшим влаго-поглощением (табл. 1.8), усадкой при литье, коэффициентом трения. Такой метод введения силикона позволяет увеличить его содержание до 5 мае. долей (%). Технология переработки новых материалов не отличается от технологии переработки исходных термопластов. Единственное отличие состоит в исключении предварительной сушки гранул, характерной для полиамидов. Введение стекловолокна в эти материалы значительно увеличивает допустимую температуру эксплуатации и их механические свойства.  [c.42]


Смотреть страницы где упоминается термин Эксплуатация полимеров : [c.177]    [c.246]    [c.48]    [c.80]    [c.85]    [c.62]    [c.5]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.272 ]



ПОИСК



Полимерия

Полимеры



© 2025 Mash-xxl.info Реклама на сайте