Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расслоение испытание

При дальнейшем повышении температуры испытания основным механизмом разрушения становится механизм роста и объединения пор так, при Т = —20 °С средняя длина крупных расслоений достигает только 50 мкм, при Г = 20°С расслоение в изломе практически отсутствует. Чашечный характер излома в области умеренных температур показан на рис. 2А,д,е. Средний диаметр крупных ямок составляет примерно 15 мкм, мелких— около 1 мкм.  [c.56]


Предельное состояние конструкции с группой несвязанных водородных расслоений, образующих область взаимодействующих расслоений, определяют, применяя критерий, аналогичный использованному в [10] для оценки работоспособности труб с глубокими коррозионными язвами. Этот критерий допускает распространение язв в глубь металла на 80% толщины стенки при небольшой площади поражения поверхности. Были проведены испытания давлением стальных сосудов (03-10 мм, длина 10 мм и толщина стенки 19 мм) с водородным расслоением металла на глубине 10 мм со стороны внутренней поверхности. Давление в три раза превышало расчетное разрушающее давление (при условии, что рабочая толщина стенки равна 10 мм). В результате произошла лишь пластическая деформация материала сосудов, что свидетельствует о возможности их эксплуатации при наличии расслоений металла в случае своевременного контроля пораженных участков [24].  [c.129]

О техническом состоянии машины или ее отдельного узла можно судить по изменению измеряемых параметров рабочего процесса, а также характеристик их рабочих режимов. Это изменение может быть оценено сравнением рабочих характеристик, построенных для данного отрезка времени и времени, принятого за исходное, например времени стендовых или сдаточных испытаний. Неизменность характеристики узла говорит о его нормальном состоянии. Расслоение характеристики определяет степень износа узла, коробления корпуса агрегата либо еще каких-то отклонений в машине.  [c.158]

Температурная устойчивость и. стабильность при хранении. Устойчивость капиллярных дефектоскопических материалов при переменах температуры означает постоянство цветовых качеств, вязкости и структуры при многократной перемене температуры в диапазоне — 15 -+60 °С или в диапазоне температур, установленном заводом-изготовителем. При испытании на температурную устойчивость 100 мл контролируемого материала в стеклянном сосуде 250 мл подвергают четырехкратному циклу изменения температуры от —15°С до +60 °С и времени выдержки соответственно 1 ч. Последняя температура должна составлять —15 °С. Определяют цветовые качества пенетрантов и вязкость всех материалов набора при температуре 20 °С. Осадок на дне и расслоения недопустимы, если на то нет указаний или температурный диапазон, на ограничен.  [c.159]

Испытание современных композиционных материалов на сжатие является не менее сложной задачей, чем испытание на растяжение, особенно при определении предела прочности. Испытание на сжатие имеет свою специфику и во многом отличается от испытания на растяжение. Сложность испытаний на сжатие обусловлена смятием торцов образца, продольным расслоением или разрушением его вне рабочей зоны [72]. Эти факторы являются следствием специфических свойств композиционных материалов. Одной из главных задач при испытании на сжатие является правильный выбор схемы нагружения образца внешними усилиями.  [c.33]


Некоторые интересные особенности механической связи в системе латунь — вольфрам были отмечены Беннетом и др. [47]. Прочность композитов составляла около 95% от значения, рассчитанного по правилу смеси. Однако наблюдался неожиданный эффект — образование нескольких шеек на небольших расстояниях друг от друга по длине проволоки, в результате чего полное удлинение было больше, чем у проволоки, испытанной вне композита. Объяснить это явление стеснением проволоки матрицей нельзя, так как образование шеек должно было приводить в этом случае к отделению проволоки от матрицы и расслоению композита из-за слабой связи. Множественное образование шеек было объяснено местным наклепом матрицы вблизи шейки на вольфрамовой проволоке. Наклепанная матрица разгружает проволоку до тех пор, пока несущая способность композита в данном месте не превысит несущую способность любого другого участка композита. Тогда деформация в данном месте прекращается и смещается вдоль проволоки в другое место. В пользу этой интерпретации свидетельствует то, что удлинение композита, составляющее 5— 10% при содержании вольфрама менее 5 об.%, уменьшается с ростом содержания последнего и при 20 об.% вольфрама достигает значений, примерно равных удлинению проволоки вне композита. При более высоком объемном содержании вольфрама уменьшается количество матрицы, способной подвергаться упрочнению и разгружать проволоку. ,  [c.81]

Разработан ряд прямых методов измерения характеристик напряженного состояния на поверхности раздела и адгезионной прочности. Поляризационно-оптический метод волокнистых включений наиболее надежен при определении локальной концентрации напряжений. Испытания методом выдергивания волокон из матрицы пригодны для измерения средней прочности адгезионного соединения, а методы оценки энергии разрушения — для определения начала расслоения у концов волокна. Прочность адгезионной связи можно установить по результатам испытаний композитов на сдвиг и поперечное растяжение. Динамический модуль упругости и (или) логарифмический декремент затухания колебаний применяются для определения нарушения адгезионного соединения. Динамические методы испытаний и методы короткой балки при испытаниях на сдвиг обычно пригодны для контроля качественной оценки прочности адгезионного соединения и определения влияния на нее окружающей среды.  [c.83]

ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]


При оценке влияния дефектов на работоспособность материала путем механических испытаний следует учитывать сильную зависимость этого влияния от ориентировки дефектов и их распределения, а также то, что различные условия разрушения — скорость нагружения, податливость нагружающей системы, наличие концентратора напряжений и т. д. — могут значительно изменить вид излома и замаскировать некоторые дефектные свойства материала. Так, в частности, особенности строения изломов, связанные с неоднородностью материала и разной способностью к пластической деформации неоднородных зон, т. е. изломы шиферные, черные , расслоения в изломах лучше выявляются в достаточно пластичном состоянии материала, чем в хрупком.  [c.185]

После испытания образец не должен иметь трещин, волосовин, надрывов, расслоений и излома.  [c.345]

Испытание биметаллов Кроме обычных испытаний для определения механических свойств, прочность соединения биметалла проверяют растяжением, скручиванием, изгибом, переменным загибом — до разрушения образца либо до его расслоения. Тонколистовой биметалл испытывают на продавливание по Эриксену до появления трещины на наружном слое.  [c.285]

Прочность соединения основного и коррозионно-стойкого слоев определяют по отсутствию расслоения при холодном загибе полосы с плакирующим слоем на оправке диаметром, равным удвоенной толщине образца при угле загиба 180°. Прочность соединения можно контролировать испытанием на срез по плоскости соприкосновения основного и коррозионно-стойкого слоев (рис. 2). Испытание образцов на срез имеет целью количественно установить прочность связи плакирующего и основного слоев.  [c.287]

Примечание. Под расслоением при испытании на скручивание понимается нарушение сплошности металла в виде поверхностных дефектов, идущих по винтовой линии или вдоль образца.  [c.289]

Многократный изгиб. Испытание (ГОСТ 422—41) заключается в изгибе образца при частоте 500 изгибов в 1 мин.,до тех пор, пока на поверхности образца не появятся трещины или же расслоения. Сопротивление резины образованию и разрастанию трещин при многократном изгибе определяют по ГОСТу 9983—62.  [c.240]

Признаком того, что образец выдержал испытание на изгиб, служит отсутствие излома, а также расслоений, надрывов и трещин, видимых невооруженным глазом.  [c.15]

Другим видом разрушения зубьев колеса, который наблюдается при испытаниях, является износ. Происходит он во всех случаях работы передачи под нагрузкой, но проявляться может в различных формах. Если нагрузка сравнительно мала, то передача может работать довольно длительное время. По мере работы передачи происходит износ зубьев, толщина их уменьшается, и наступает такой момент, когда начинается расслоение шпона, сдвиг его отдельных слоев и частичный излом зубьев.  [c.65]

Липкость изоляционной ленты проверяется путём определения скорости расслоения полоски, состоящей из сложенной вдвое ленты, под нагрузкой на 1 см ширины 200 г до старения изоляционной ленты и 100 г после её старения. При этом испытании один конец изоляционной ленты закрепляют неподвижно, а к другому подвешивают груз. Скорость расслоения не должна превышать 100 мм[мин. Старение ленты производят в термостате при 70+ 2° С в течение 16 час.  [c.328]

Сравнение результатов испытаний образцов методом теплового удара с результатами натурных испытаний показывает, что предлагаемый метод обеспечивает объективную оценку разнообразных качеств фрикционных материалов коэффициент трения, стабильность его в процессе торможения, износостойкость, трещинообразование, расслоение, наволакивание, схватывание и т. п.  [c.139]

Однако исследования показали, что при солесодержании котловой воды 5к.в 5000 мг/кг в трубах с прямыми участками //of 20 и при приведенных скоростях пара в трубах Штр 8 м/с расслоение пароводяной смеси практически отсутствует, что исключает возможность увеличения допустимой нагрузки циклонов (это было подтверждено соответствующими испытаниями промышленного циклона).  [c.53]

На раздачу по ОСТ 1689 подвергаются трубы (в холодном состоянии) диаметром до 108 мм. Испытание производится при помощи оправки с конусностью 1/10. При раздаче труба должна выдержать увеличение наружного диаметра согласно табл. 3-3 без появления трещин, надрывов, расслоения или закатов в металле трубы.  [c.27]

Каждая пружина должна быть проверена на полное сжатие, т. е. сжата до соприкосновения всех витков между собой, и при этом не должно быть выпучивания отдельных витков и перекоса Опорных плоскостей пружины после такого испытания на пружинах не должно быть трещин, расслоений.  [c.98]

Рассмотрим результаты фрактографических исследований. Предпринятый в работе [212] анализ поверхности разрушения указанных сталей показал, что в условиях одноосного растяжения смена механизмов разрушения при изменении температуры испытания подчиняется общим для простых моно- и поликрг.с-таллов с ОЦК решеткой закономерностям и в изломе можно наблюдать следующие фрактуры скол, расслоение, чашечную. При Т = —196 °С разрушение происходит по механизму микро-скола. В качестве примера на рис. 2.4, а и б показана поверхность разрушения стали 15Х2НМФА в исходном состоянии и после термообработки. Характерный размер фасеток скола составляет 10—20 мкм. С повышением температуры деформирования в изломе появляются вязкие составляющие расслоения и ямки. В температурном интервале от —160 до О °С фрактура становится смешанной присутствуют трещины расслоения, фасетки скола и ямки (рис. 2.4,в) с ростом температуры постепенно уменьшается доля хрупкой составляющей и увеличивается вклад вязких компонент. При Г >—100 °С фасеток скола в изломе нет, в температурном диапазоне от —100 до —50 °С количество расслоений максимально (средняя их плотность по-  [c.53]

Водородное растрескивание тройника трубопровода 0720 х 18 мм, сооруженного из труб фирмы УаПпгес, произошло после шести лет эксплуатации. Механические испытания металла из очага разрушения показали, что его прочностные свойства соответствуют техническим условиям. В то же время вследствие нано-дороживания относительное сужение уменьшилось более чем на 30%. Металлографические исследования позволили установить, что водородные блистеры зарождались на границах матрица-неметаллические включения и располагались по всему сечению стенки тройника. При этом их максимальная концентрация наблюдалась в середине стенки. Данное явление можно объяснить повышенной концентрацией неметаллических включений в центральной зоне листа вследствие специфики изготовления проката. В дальнейшем, по мере накопления водорода, блистеры сливались между собой или с поперечными трещинами, пронизывая все сечение металла. Значительное давление водорода в расслоении привело к возникновению разрушающих напряжений в наружных слоях металла стенки и к развитию поперечных трещин с последующей разгерметизацией участка трубопровода (рис. 12г). Водородное растрескивание металла с образованием сквозного дефекта в нижней части тройника явилось следствием его эксплуатации в условиях застойной зоны при отсутствии Э(()фективного ингибирования.  [c.39]


По механическим свойствам металл трубопровода соответствовал требованиям нормативных документов. При испытаниях образцов металла новых труб на водородное расслоение по методике NA E ТМ 0284-96 (база испытаний — 96 ч) в образцах образовывались трещины, характерные для водородного расслоения. С учетом опыта эксплуатации ОНГКМ было сделано заключение, что дефекты, приведшие к разрушению трубопровода регенерированного газа, могут возникнуть в течение 6-8 месяцев даже в трубах, стойких к сероводородному растрескиванию, в отсутствие ингибирования и при наличии  [c.48]

Значительно снизить число коррозионных поражений нефтепроводов позволяет рациональное применение технологических приемов транспорта нефтепродуктов. Один из них — ликвидация возможности расслоения нестойкой нефтеводной эмульсии поддержанием высоких скоростей ее транспортирования в так называемом эмульсионном режиме. Второй технологический прием заключается в раздельной транспортировке безводной и обводненной нефти. Третий — это периодические гидравлические испытания нефтепроводов. Возможно применение и других технологических приемов, которые особенно эффективны при совместном применении с защитными мероприятиями и, в частности, с ингибированием.  [c.186]

Аналогичное явление имело место при испытании на изгиб. Для материалов, изготовленных на основе матрицы ЛСБ, разрушение образцов происходило в растянутой зоне. Следов разрушения в сжатой зоне, как правило, ис наблюдалось. Углерод-углеродные материалы на основе пека имели совершенно иной характер разрушения, который обусловлен технологическим режимом их изготовления. Для одних материалов имело место хрупкое разрушение, для других — пластическое. Материалы с углеродной матрицей не обнарул ивают хрупкого разрушения вследствие постепенного расслоения волокон и микрорастрс-скивания матрицы [123]. Им свойственно псевдоупругопластическое поведение, что особенно наглядно проявляется в зависимости прогиб—нагрузка при трехточечном изгибе, т. е. характер разрушения углерод-угле-родных материалов на сжатие и изгиб может изменяться за счет изменения исходной матрицы и технологического режима их изготовления.  [c.200]

Характер разрушения. Композиционные материалы, изготовленные на основе внекеризованпых волокон, при испытании на растяжение, сжатие, изгиб и сдвиг не обнаруживают расслоения, свойственного обычным стекло-, угле- н боропласти-кам. Растяжение образцов из этих материалов не сопровождается акустической эмиссией, характерной дли испытания композиционных материалов, образованных системой двух и трех нитей разрушение образцов при всех указанных видах нагружения происходит мгновенно. Это свидетельствует о том, что несущие способности матрицы, укрепленной нитевидными кристаллами, и волокон исчерпываются одновременно. Для этих материалов характерен хрупкий вид разрушения как при испытаниях их на растяжение, сжатие, так п при изгибе и сдвиге.  [c.216]

Моди( )ицированнай матрица, полученная на основе нитевидных кристаллов с хаотической их орнензацней в плоскости армирования, имеет также хрупкий характер разрушения. Испытание образцов, изготовленных на моди())ииированпой матрице, на изгиб при малых отношениях 1/1г не приводит к разрушению от расслоения. Даже при отношении ///г 3 наблю-  [c.216]

Рассчитанная по уравнению (5.27) деформация, которая предшествует разрушению сколом в интервале хрупко-пластичного перехода, практически полностью совпадает с кривой 3. При расчете больших деформаций учитывался стадийный характер деформационного упрочнения через коэ( х шциент усреднения р (смотри выше). Кривые 4 и 5 на диаграмме ИДТ представляют диаграмму структурных состояний и соответствуют деформациям, при которых происходит изменение коэ4х))ициента деформационного упрочнения в процессе развития и перестройки дислокационной структуры. Эти кривые фактически являются верхней границей равномерного распределения дислокаций ( лес ) и соответственно нижней границей образования ячеистой структуры. Причем если при деформации выше 200 °С наблюдается равноосная ячеистая структура (5.19, г), то при более низких температурах ячеистая структура обнаруживает четкую связь с полосами скольжения (5.19, д), что свидетельствует об ограниченном характере поперечного скольжения. Кривые 7 н 9 построены с привлечением данных фрактографических исследований. При повторном изломе в продольном направлении охлажденных до —196 °С образцов, которые ранее были испытаны при 800 и 1000 С, в шейке образцов наблюдалось межзеренное хрупкое разрушение (рис. 5.19, б), причем размер зерен составлял 1—2 мкм. Поскольку после первичных испытаний ниже 600 С, несмотря на хорошо сформированную ячеистую структуру, такой вид разрушения не наблюдается, то предполагается, что в шейке образца при больших деформациях начинается динамическая рекристаллизация [435], хотя такие низкие температуры начала этого процесса (Тр 700 С, или 0,ЗЗГпл) еще пока не отмечались. Таким образом, кривая 7 нанесена в качестве нижней границы области динамической рекристаллизации. Кривая 9, построенная по данным фрактографических исследований, схематически показывает температурно-деформационную область, в которой имеет место расслоение по границам ячеистой структуры.  [c.220]

Чамис и др. [39] провели испытания по Изоду миниатюрных образцов из эпоксидных стекло- и углепластиков (размеры образцов 7,9 X 7,9 X 37,6 мм) с волойнами, параллельными и перпендикулярными оси консоли. Эксперименты выявили различные формы разрушения — расщепление, сопровождающееся выдергиванием волокон и расслоением. При поперечном армировании разрушение образца сопровождалось нарушением когезионных и адгезионных связей, а также расщеплением волокон. Как установлено авторами, ударная прочность образцов с поперечным армированием для всех испытанных материалов находится в соответствии с пределом прочности при межслоевом сдвиге.  [c.314]

В экспериментальных работах по распространению импульсных возмущений наибольший интерес представляет, разумеется, вопрос о разрушении в условиях динамического нагружения. Часто наблюдался разрыв по поверхности раздела фаз см., например, работы [41, 42, 44]. Экспериментальное и аналитическое изучение таких отрывных разрушений проводилось также Ахен-бахом с соавторами [7]. Откол в слоистом кварц-фенольном композите был исследован в работе Коэна и Берковитца [23], которые провели испытания на удар летящей пластинкой (из майлара) толщиной 5 мм и 15 мм по образцу из композиционного материала толщиной 0,15 дюйма. Они установили, что откол происходит при расслоении после возникновения вторичной трещины, перпендикулярной поверхности, по которой производится удар.  [c.386]

Оказалось возможным нормировать эти результаты, разделив поррежденности в каждой точке в текуш,ий момент испытаний на величину поврежденности в конце испытаний. После этой процедуры результаты для всех участков можно представить единой кривой с некоторой полосой разброса. При монотонном растяжении (рис. 14) до 30% от предела прочности возникает незначительное расслаивание, в то время как после этого уровня напряжений количество расслоений резко растет вплоть до напряжений порядка 70% от предела прочности, после чего процесс расслаивания становится близок к насыщению. Начало растрескивания смолы возникает примерно при 70% от предела прочности на растяжение, но в конкретно выбранной смоле растрескивание не имело достаточно широкого распространения, чтобы можно было делать выводы на основе его измерений. В условиях циклического нагружения (рис. 15) расслаивание становится близким к насыщению на ранней стадии испытаний, но оно снова начинает увеличиваться перед концом испытаний. Растрескивание смолы начинает расти  [c.354]


Исследование методами световой и растровой электронной микроскопии износа пары никель — никелевый сплав при трении без смазки позволило выяснить, что в начальный период износ является абразивным, обусловленным шероховатостью поверхностей. При этом происходит схватывание со сдвиговым разрушением и переносом сплава на поверхность никеля. При дальнейшем испытании непрерывное схваты вание и птпел ние епут к расслоению метал-  [c.17]

На присутствие усталостных микрополосок могут оказывать влияние условия испытания. Так, в отжиленном армко-х елезе, испытанном при симметричном циклическом кручении, разрушение проходило путем расслоения по плоскостям скольжения [24], Усталостных микрополосок на поверхности излома при низком и высоком уровне напряжений может не быть. Так, иногда при низком уровне нагрузок наблюдался рельеф в виде фасеток отрыва, характерных для хрупкого разрушения [37, 120, 138]. В ряде случаев при низком уровне нагружения усталостные микрополоски выявляются с большим трудом. На оптическом микроскопе при этом могут наблюдаться плато с небольшой рябизной (см. рис. 75,6), а на электроином-плато с очень тонкими неглубокими полосками. Таким образом, в случае отсутствия микрополосок признаком усталостного разрушения может явиться наличие плато, создающих волокнистость рельефа (см. рис. 73,а), что особенно характерно для алюминиевых сплавов, или сглаженного слегка волокнистого рельефа для высокопрочных сталей (рис. 86).  [c.113]

Повышение работоспособности промысловых трубопроводов является актуальной задачей для нефтегазодобывающ.ей, а также химической промышленности в связи с растущими темпами развития трубопроводной транспортировки горного сырья. Особую актуальность приобретает эксплуатационная надежность трубопроводов в случае высокоминерализованных водных сред (хлориды натрия, кальция, магния и др.), транспортируемых при перекачке обводненной нефти, соленой пластовой воды в технологии вторичных методов добычи нефти, а также при добыче солей методом подземного выщелачивания. При остановке нефтепровода, а также при использовании метода внутритрубной деэмульсации происходит расслоение воды и нефти, которое в определенных условиях приводит к скоплению воды в пониженных участках трассы. Скопления водной фазы могут быть также результатом гидравлических испытаний на завершающей стадии строительства трубопроводов.  [c.235]

В материале образца и на его покровном слое (оцинковке, полуде) после навивания и развивания не должно обнаруживаться расслоения, отслаивания, трещин, надрывов или излома. Это испытание применяют для проволоки не толще 6 мм.  [c.344]

На стадии изготовления существенное значение для обеспечения прочности и ресурса ВВЭР имеет контроль применяемых материалов, сварных соединений и наплавок по стандартным или унифицированным характеристикам механических свойств (статические стандартньве испытания на растяжение при комнатной и повышенной температуре, испытания на ударную вязкость, а также дополнительные механические и технологические испытания). Основной целью таких испытаний является определение соответствия фактических характеристик механических свойств техническим условиям (последние, как правило, входят в расчет прочности при проектировании). Вторым элементом, определяющим эксплуатационные прочность и ресурс ВВЭР, является дефектоскопический контроль исходных материалов, заготовок и готового обррудования. Этот контроль проводится с целью поддержания дефектов (трещин, пор, включений, расслоений, забоин и др.) на определенном уровне по размерам, скоплениям.  [c.7]

При испытании резьбовых соединений бурильных труб размером 120X11 мм различие во влиянии сред проявляется более четко в щелочном растворе выносливость труб значительно ниже, чем в растворах с pH = 7. Поскольку в щелочном растворе электродный потенциал сплава намного отрицательнее, чем в нейтральном и соленасыщенном растворах, и ток коррозии больше, то он оказывает более сильное разупрочняющее действие при усталости. Поверхность труб покрыта язвами в результате локального анодного растворения yi межкристаллитной корозии, наблюдается расслоение металла.  [c.68]

Разрушение резины (методы испытания) 241 Разрыв и растяжимость пленок 190 Раковина усадочная 6 Расплющивание (метод испытания) 8 Расслоения (дефект металлов) 7 Растворимый силикат натрия 272 Растворитель древесноспиртовой 197 Растворители и разбавители 195—202 Растворяющие вещества 196 Растекаемость масел и смазок 300 Растир, растертость красок (см. перетир красок) 190 Растительные масла и продукты их переработки 193, 320 Растяжение металлов (временное сопротивление) 3  [c.344]

Многократный изгиб. Испытание заключается в многократном изгибе образца до появления па поверхности образца трещин или расслоений. Сопро-тивлепно резины образованию и разрастанию трещин при многократном изгибе определяют методами А и Б по ГОСТ 9983—74.  [c.270]

Так, например, одна из опытных передач с параметрами Л = 80 мм, т — 3 мм, Zj = 1 проработала при =- 1500 об мин (V = 2,92 м1сек) и Л 2 = 7 кГм около 2500 ч. Этой нагрузке соответствуют условные контактные напряжения о = 1700 кПсм и напряжения изгиба о = = 245 кПсм . Температура масла во время испытаний была около 77° С, а к. п. д. —около 50%. Во время работы передачи наблюдался износ зубьев колеса. К концу испытаний толщина зуба у основания уменьшилась на 1,5—2 мм, а вершина зуба сильно заострилась. Вследствие этого прочность зубьев значительно понизилась начался процесс расслоения шпона, сдвиг и излом отдельных участков зуба.  [c.65]

Поверхность трения образцов после испытаний тепловым ударом принимает такой же вид, как у материала, работавшего в натурном тормозе, Выявляется также склонность материалов к трещинообразова-нию, расслоению, наволакиванию, схватыванию.  [c.139]

Метод теплового удара позволяет, подобно атурным испытаниям, выявлять, кроме коэффициента трения и износостойкости, ряд других свойств материалов стабильность коэффициента трения пары, склонность материалов к трещинообразованию, расслоению, наволакиванию, и т. п.  [c.139]

При 350°С al>470 МПа, 0 2 255 МПа. Лист должен выдерживать в холодном состоянии испытание на изгиб на 180° вокруг оправки d=2S. При комнатной температуре после старения, а также при—40°С а >39Дж/см . На поверхности листов не допускается трещин, плен,закатов и вмятин от окалины. Листы из стали 16ГНМА проверяют ультразвуком на наличие расслоений и других внутренних дефектов. Макроструктура протравленных темпле-тов не должна иметь расслоений, флокенов, неметаллических включений и скоплений волосовин.  [c.111]


Смотреть страницы где упоминается термин Расслоение испытание : [c.55]    [c.52]    [c.164]    [c.160]    [c.33]    [c.83]    [c.421]   
Межслойные эффекты в композитных материалах (1993) -- [ c.241 ]



ПОИСК



Разрушение по типу I при испытании на расслоение у кромки



© 2025 Mash-xxl.info Реклама на сайте