Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодное локальное (Ni)

Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где их прохождение облегчено (энергия активации реакции меньше).  [c.186]


Если обозначить через / силу локального коррозионного тока, S —общую поверхность корродирующей системы, 5 и Sa—соответственно поверхности катодной и анодной фаз, то для случаев, когда сопротивление локальных элементов невелико (потенциалы катодной и анодной фазы выравниваются благодаря полной поляризации), можно написать следующие три уравнения  [c.273]

С. Ш. Подольской показали, что коррозионное растрескивание металлов в нейтральных электролитах, по крайней мере в начальных стадиях, является следствием локального анодного активирования поверхности и ускоряется анодной поляризацией и полностью тормозится катодной поляризацией, причем с уменьшением кислотности среды расширяется область потенциалов, при которых возможно коррозионное растрескивание по этому механизму. Особо эффективно способствуют коррозионному растрескиванию металлов ионы СГ и S N .  [c.335]

Возникновение локальных пар окалина—металл имеет большое практическое значение для коррозионной стойкости стальных конструкций не только в морской воде. Так, понтоны сплоточных машин, изготовленные из листов низкоуглеродистой стали без предварительного снятия окалины, за работу в течение двух навигаций на Северной Двине подверглись значительной местной коррозии с глубиной отдельных язв до 1,5—2 мм. Причиной этого быстрого коррозионного разрушения металла понтонов, как установил М. Д. Мещеряков, явилось наличие на стали окалины. В результате повреждения окалины в отдельных местах возникли гальванические пары, в которых роль катода играла окалина, а роль анодов — отдельные свободные от окалины участки металла. Большая катодная поверхность (покрытая окалиной) и сравнительно малая поверхность анодов (участков, свободных от окалины) и приводит к усиленному анодному растворению металла в местах с удаленной или поврежденной окалиной.  [c.400]

Разрушение пассивности ионами С1 чаще происходит локально, на тех участках поверхности, где структура или толщина пассивной пленки изменены. Образуются мельчайшие анодные участки активного металла, окруженные большими катодными площадями пассивного металла. Разность потенциалов между подобными участками 0,5 В или более, и эти элементы называют активно-пассивными элементами. Высокие плотности тока на аноде обусловливают высокую скорость разрушения металла, что создает катодную защиту областей металла, непосредственно окружающих анод. Фиксирование анода на определенных участках приводит к образованию питтингов. Чем больше ток и катодная защита около питтинга, тем меньше вероятность образования другого питтинга по соседству. Поэтому плотность расположения глубоких питтингов обычно меньше, чем мелких. Исходя из вероятности образования активно-пассивного элемента очевидно,  [c.84]


При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи.  [c.88]

При низкой плотности блуждающих токов дополнительные разрушения вызываются действием локальных элементов. При высокой плотности тока в некоторых средах может выделяться кислород — это снижает коррозионные потери металла на единицу количества электричества. Амфотерные металлы (например, РЬ, А1, Sn, Zn) корродируют и в щелочах, и в кислотах, поэтому они могут разрушаться не только на анодных участках, но и на катодных, где в результате электролиза накапливается щелочь.  [c.212]

Как указывалось в разд. 4.10, защита осуществляется наложением внешнего тока, который поляризует катодные участки локальных элементов до значений потенциала анодных участков при разомкнутой цепи [1]. Поверхность становится эквипотенциальной (катодный и анодный потенциал равны), и коррозионный ток более не протекает. Иными словами при достаточно большой плотности внешнего тока суммарный положительный ток протекает на всей поверхности металла (включая анодные участки), следовательно, отсутствуют условия для перехода ионов металла в раствор.  [c.215]

Поэтому при анодировании алюминия (см. разд. 14.4J, целью которого является формирование утолщенной покровной оксидной пленки, водород выделяется как на аноде, так и на катоде. Некоторые исследователи рассматривают также выделение водорода на аноде как следствие усиленной локальной коррозии при анодном растворении.  [c.340]

Механизм воздействия коррозионных сред. Различают три основных механизма влияния коррозионных сред на трещино-стойкость конструкционных материалов адсорбционное понижение прочности, водородное охрупчивание и локальное анодное  [c.343]

Понимание физико-химической природы коррозионного разрушения наиболее важно в случае роста трещин при низких значениях коэффициента интенсивности напряжений, кинетика которых определяет долговечность изделий с трещиной. Здесь доминирующим является либо водородное охрупчивание, либо локальное анодное растворение. Механизм водородного охрупчивания (см. 41) характеризуется тем, что независимо от состава среды и приложенного потенциала в вершине трещины вследствие гидролиза продуктов коррозии устанавливаются всегда такие значения pH и потенциала, при которых термодинамически воз-моя ен проце.сс разряда ионов водорода  [c.344]

При наличии анодного беспористого покрытия вероятность развития трещин от локального питтинга незначительна, т.е. имеет место и чисто экранирующий эффект от коррозионной среды.  [c.71]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]


Таким образом, и образование коррозионных туннелей, вызванных анодным растворением локальных объемов, и скол, вызванный сегрегацией абсорбированного водорода в местах с максимальным уровнем напряжений, являются взаимосвязанными стадиями процесса коррозионного растрескивания.  [c.69]

Эффективным методом исследования коррозии металла котлов, в частности локальных коррозионных повреждений, является изучение кривых анодного заряжения поверхности. Для их получения электрод заряжается анодно током постоянной плотности. По характеру изменения потенциала во времени можно однозначно определить, подвергается ли металл локальной коррозии или нет. Метод анодного заряжения дает возможность по кривым потенциал -время определять минимальное положительное значение потенциала, при котором начинается активирование поверхности, и выявлять некоторые специфические особенности локальной коррозии. Подробнее об этом методе см. в 6.1.  [c.143]

Вместе с тем задача контроля локальных коррозионных разрушений металла котлов является весьма актуальной. Одним из методов надежного контроля локальных видов коррозии, а также оценки эффективности противокоррозионного действия пленок и поверхностных слоев на поверхности стали является метод анодного заряжения поверхности. Метод основан на том, что металл в данной коррозионной среде заряжается анодно током постоянной плотности. По характеру изменения потенциала во времени можно однозначно определить, подвергается ли металл локальной корро-  [c.185]

Избирательное коррозионное разрушение металлических материалов является наиболее опасным, так как при незначительных потерях массы металла и сохранении в общем прежнего внешнего вида конструкции, аппарата или отдельной детали резко снижаются их механические свойства, что может привести к катастрофическим последствиям. Большинство случаев структурной и локальной коррозии может быть объяснено с позиции представлений о парциальных анодных кривых, развитых В. П. Батраковым на основании литературных данных и собственных экспе-  [c.31]

С помощью катодной и анодной поляризации можно уменьшить или увеличить проявление структурной и локальной коррозии сплавов.  [c.33]

Для простоты приводится одна анодная поляризационная кривая для щели и открытого участка поверхности сплава. Как видно из рис. 17, сплав в щели находится в активном состоянии, а на открытой поверхности — в пассивном состоянии (коррозионный потенциал им ет более положительное значение). В этих условиях между участком сплава в щели и открытой поверхностью возникают локальные токи, что приводит к сближению их потенциалов ( к, и к,). Однако в этих условиях система часто остается не полностью заполяризованной. В процессе коррозии металла в щели изменяется состав раствора (pH, концентрация ионов металла и других компонентов раствора) из-за возникающих диффузионных ограничений, что приводит к изменению хода анодной парциальной кривой для этой части поверхности. При этом может изменяться положение равновесного потенциала, Еа и значения других величин, и парциальные анодные кривые для сплава в щели и на открытой поверхности становятся разными.  [c.42]

Данный электрохимический механизм возможного повышения коррозионной стойкости сплава катодным легированием в условиях возможного пассивирования анодной фазы, сформулированный Н. Д. То-машовым, можно пояснить с помощью поляризационной коррозионной диаграммы (рис. 218). На этой диаграмме (К)обр а — кривая анодной поляризации пассивирующейся при / и V анодной фазы сплава ( VJoepV K, — кривая катодной поляризации собственных микрокатодов сплава ( к)обр кг — кривая катодной поляризации катодной присадки к сплаву ( к)обр к,.—суммарная катодная кривая. Локальный ток /j соответствует скорости коррозии сплава без катодной присадки, а для сплава с катодной присадкой этот ток имеет меньшую величину /2 [точка пересечения анодной кривой (1 а)обрЛЛУа с суммарной катодной кривой (1 к)обр кс1- При недостаточном увеличении катодной эффективности (суммарная катодная кривая пересекается с анодной кривой при I < / ) или при затруднении анодной пассивности [анодная кривая активного сплава (Va)o6p V a, достигает очень больших значений тока] происходит увеличение локального тока до значения /3, а следовательно, повышается и скорость коррозии сплава.  [c.318]

В 1940 г. Дикс [24] высказал предположение, что между металлом и анодными включениями (такими, как интерметаллид-ная фаза uAlj в сплаве 4 % Си—А1), выпадающими по границам зерен и вдоль плоскостей скольжения, возникают гальванические элементы. Когда сплав, подвергнутый растягивающему напряжению, погружен в коррозионную среду, локальное электрохимическое растворение металла приводит к образованию трещин к тому же растягивающее напряжение разрывает хрупкие оксидные пленки на краях трещины, облегчая таким образом доступ коррозионной среды к новым анодным поверхностям. В подтверждение этого механизма КРН был измерен потенциал на границе зерна металла, который оказался отрицательным или более активным по сравнению с потенциалом тела зерна. Более того, катодная поляризация эффективно препятствует КРН.  [c.138]

Почвы, содержащие органические гуминовые кислоты, отличаются агрессивностью по отношению к стали, цинку, свинцу и меди. Общая кислотность такого грунта точнее характеризует его агрессивность, чем только значение pH. Заметные концентрации Na l и N82804 придают трудноосушаемым почвам, встречающимся на юге Калифорнии, высокую агрессивность. Помимо увеличения активности локальных элементов при повышении электропроводимости почвы большое значение приобретают макро-гальванические элементы большой протяженности, возникающие вследствие различий концентрации О2 в почвах разного состава или неоднородности поверхности металла. Аноды и катоды могут находиться на расстоянии нескольких километров друг от друга. Грунт с низкой Электропроводимостью чаще всего менее агрессивен, чем высокоэлектропроводный, из-за малого количества влаги или наличия растворенных солей или и того и другого вместе. Однако электропроводимость сама по себе не является показателем агрессивности немалую роль играет характеристика анодной или катодной поляризации металла в данном грунте, [6].  [c.183]


В сварочных дугах имеются три характерные зоны — катодная, анодная и столб дуги. Столб сварочных дуг при атмосферном давлении представляет собой плазму с локальным термическим равновесием, квазинейтральностью и свойствами идеального газа. В столбе вакуумных сварочных дуг термическое равновесие может не наблюдаться, т. е. Te> Ti=Tn). С помощью физики элементарных процессов в плазме определяют потенциал ионизации газов Ui, эффективное сечение взаимодействия атомов с электронами (по Рамзауэру) Qe и отношение квантовых весов а . С использованием термодинамических соотнощений (первое начало термодинамики, уравнение Саха) определяют эффективный потенциал ионизации о, температуру плазмы столба Т, напряженность поля Е и плотность тока / в нем.  [c.60]

Для расчета коррозии по плотности анодного радиального тока применяется закон Фарадея. Плотность анодного тока 1 мкА/см соответствует скорость коррозии 0,0116 мм/год. Однако здесь следует заметить, что для расчета плотности радиального тока используется ток, текущий от цилиндрической секции колонны. Если на ней существуют и анодный и катодный участки, то Токи будут как бы нивелироваться и взятый отсчет может оказаться ошибочным. Далее, если активные участки концентрируются не небольшой поверхности секции, истинная локальная плотность тока будет сильно отличаться от средней плотности для всей поверхности иишндра. Наконец, скорость коррозии вычисляется в предположении, что весь анодный ток расходуется на окисление железа до Ре (II ), Попутно с определением скорости коррозии может быть найдена толщина колонны, если известны ее сопротивление и внешний диаметр. Полученные таким образом толщины обычно хорошо согласуются с акустическими измерениями.  [c.11]

Решающий фактор коррозионного растрескивания в метиловом спирте —наличие в среде воды и ионов галогенидов. В ненапряженных бинарных сплавах Т1 — А1, испытываемых а метиловом спирте с добавкой 0,5 % иода, даже при отсутствии воды наблюдается явно выраженная локальная коррозия. Вода при введении ее в раствор является пассиватором, т.е. тормозит реакцию растворения титана, что сказывается на уменьшении плотности анодного тока и, следовательно, на уменьшении интенсивности общей коррозии (рис. 32, а). Влияние добавки воды на стойкость к коррозионному растрескиванию не совсем однозначно. При маЬых добавках вода либо мало влияет на коррозионное растрескивание, либо усиливает его. При большей концентрации воды в рабочей среде наблюдается повь шение стойкости к растрескиванию чистого титана и его сплавов, но только если эта концентрация выше некоторой критической величины. В частности, у чистого титана в метиловом спирте с добавкой 0,5 % иода эта концентрация должна быть выше 1 % (см. рис. 32.fi) [ 49] у сплава Т(—6%А1 — 4% / (типа ВТ6), испытанного в метиловом спирте с добавкой 0,01 н. раствора N30, стойкость сплава резко возрастает при содержании воды более 0,25 % (рис. 33). В метиловом спирте с ионами иода прекращение коррозии и отсутствие склонности к растрескиванию наблюдаются только при содержании воды более 15 %. Установлено благотворное влияние воды на стойкость к коррозионному растрескиванию в метаноле, и сплава Т( —8 % А1 —  [c.53]

Многочисленные причины, вызывающие появление и развитие трещин при коррозионном растрескивании, сводятся к двум основным механизмам локальное анодное растворение в вершине трещины и водородное охрупчивание. Роль каждого зависит от состава сллава и его термической обработки, среды, условий нагружения и потенциала. Рассмотрим основнью положения этих механизмов.  [c.56]

Как видно из уравнения, значения /д, а следовательно, и V зависят от природы растворяющихся фаз, а также от сопряженных катодных реакций, протекающих на.других участках, величины тока на которых уравновешивают ток в вершине трещины. Поэтому исключительно большое значение приобретает химическая природа участков, на которых протекают анодная и катодная реакции, а также химический состав электролита (среды). Наблюдаемые скорости развития коррозионной трещины требуют высоких плотностей анодного тока, что в значительной мере может быть реализовано при активации вершины трещины за счет наличия в сплаве структурных составляющих (фаз или сегрегатов), способствующих образованию гальванического элемента. Отдельные фазы или сегрегации элементов сплава внутри твердого раствора могут действовать или в качестве многочисленных микроанодов, способствующих локальному растворению в вершине трещины, или в качестве катодов, которые способствуют локальному растворению прилегающих к ним слоев матрицы. Сегрегация элементов по границам зерен или сегрегация внутри зерен, особенно при образовании дальнего или ближнего порядка, представляет потенциальные участки, в которых возможно образование микроанодов.  [c.57]

В настоящее время нет единой точки зрения о приоритете того или другого механизма в процессе коррозионного растрескивания. Выводы о ведущей роли одного из процессов в вершине трещины в большинстве работ носят, как правило, альтернативный характер. Обосновывая ведущую роль одного из механизмов, авторы не обсуждают или отвергают возможность разрушения при коррозионном растрескивании по любому другому механизму. Так, Дж. Скалли [60] даже вводит новое понятие— водородное растрескивание, относящееся к сплавам, которые разрушаются под напряжецием в коррозионной среде вследствие внедрения атомов водорода в кристаллическую решетку. До недавнего времени для выяснения механизма коррозионного растрескивания считалось достаточным изучить влияние поляризации при одних и тех же условиях нагружения на скорость разрушения. Если анодная поляризация, активирующая растворение у вершины трещины, приводит к уменьшению времени до разрушения, а катодная поляризация, наоборот, снижает скорость роста коррозионной трещинь), значит, коррозионное растрескивание протекает в основном по механизму локального анодного растворения. Если же катодная поляризация ускоряет разрушение, а анодная, наоборот, его задерживает или замедляет, ведущим процессом при коррозионном растрескивании является проникновение водорода в кристаллическую решетку и связанное с этим охрупчивание металла в вершине трещины.  [c.58]

В работах [61, 62] рассматривается возможность реализации при коррозионном растрескивании титановых сплавов обоих механизмов. При этом с увеличением коэффициента интенсивности напряжений доля анодного растворения (повышенное растравливание на полосах скольжения) уменьшается, а количество выделяющегося водорода и соответственно водородное охрупчивание увеличиваются. Близкие представления подробно развит1 1 В.А. Маричевым [63, 64]. Он считает, что критическая скорость роста трещин —и соответствующая ей критическая величина интенсивности напряжений, при которой происходит водородное охрупчивание (Kg, являются количественными показателями роли локального анодного растворения и водородного охрупчивания при росте трещин. При и ,< а.ох основным механизмом корро-  [c.59]


Таким образом, изменение состава коррозионной среды в результате процессов электрохимического растворения титана и накопления продуктов коррозии может в определенных условиях активизировать анодный процесс. Если в результате пластической деформации в коррозионной среде создается активная поверхность металла с достаточно большой плотностью анодного тока, а геометрические размеры щели таковы, что отсутствует обмен внутрищелевого раствора с основной средой, могут сложиться условия, когда процесс коррозионного растрескивания будет спонтанно развиваться. Поэтому возможность конвекционного обмена внутрищелевого раствора с окружающей средой в значительной степени зависит от степени раскрытия трещины, которая определяется величиной ядра упруго-пластической де формации в вершине трещины и пропорциональна отношению Ку а ) . Так как раскрытие трещины является макро-характеристикой, косвенно отражающей локальные пластические деформации в ее вершине, у материала с большой предельной пластичностью наблюдается и большее раскрытие краев дефекта до образования трещины в вершине.  [c.63]

Проявление структурной и локальной коррозии сплавов зависит от природы структурных составляющих и физически неоднородных участков металла, но также и от величины окислитель но-восстановительного потенциала среды, концентрации водородных ионов и температуры раствора, присутствия поверхностно-активных веществ и адсорбционных свойств поверхности сплавов. Явления адсорбции также определяют электрохимическую гетерогенность сплавов, в зависимости от которой могут поддерл<иватьея различные плотности анодного тока на различных участках.  [c.32]

Различные виды структурной и локальной коррозии определяются природой структурных составляющих и неоднородных участков поверхности, характеризующихся индивидуальным анодным поведением при различных потенциалах в соответствии с осо-бениобтями парциальных анодных кривых.  [c.36]

При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингооб-разования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования.  [c.38]

На основе локальной катодной защиты (защиты опасных мест ) в последние 10 лет была разработана технология совместной катодной защиты подземного оборудования и коммуникаций всего комплекса электростанций и промышленных агрегатов [51]. Эта технология целесообразна в том случае, когда системы трубопроводов уже нельзя надежно или экономично изолировать от железобетонных фундаментов или заземляющих устройств [52]. При наложении защитных токов в несколько сот ампер и применении глубинных анодных заэемлителей в этом случае можно было предотвратить образование протяженных макроэлементов путем снижения потенциала катодно защищаемых поверхностей [53]. В ФРГ с 1974 г. катодная защита магистральных газопроводов с давлением свыше 0,4 или 1,6 МПа считается обязательной и регламентируется рабочими нормалями Западногерманского объединения специалистов газового и водопроводного дела (DVQW Q-462 и Q-463) это относится и к нефтепроводам, защита которых регламентируется нормалью па магистральные трубопроводы для транспортирования опасных (горючих) жидкостей (TRbF301). В настоящее время общая длина трубопроводов, имеющих катодную защиту, превыщает в ФРГ 40 тыс. км.  [c.39]


Смотреть страницы где упоминается термин Анодное локальное (Ni) : [c.69]    [c.85]    [c.18]    [c.19]    [c.42]    [c.364]    [c.368]    [c.370]    [c.340]    [c.346]    [c.78]    [c.73]    [c.57]    [c.61]    [c.388]    [c.36]   
Структура коррозия металлов и сплавов (1989) -- [ c.173 ]



ПОИСК



Анодный

Г локальный

К локальности



© 2025 Mash-xxl.info Реклама на сайте