Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность длительная конструкции — Оценка

В связи с этим представляет интерес проведение оценки фактической длительной прочности такой конструкции, как гибы паропроводов, с использованием в качестве экспериментальных точек данных, полученные по гибам, разрушенным в процессе эксплуатации. Были рассмотрены разрушенные гибы с феррито-карбидной структурой. Расчет эквивалентных напряжений в гибах при работе под внутренним давлением проводится по [36].  [c.52]

Количественная оценка влияния вида напряженного состояния на сопротивление разрушению зависит от индивидуальных особенностей исследуемого материала. Следовательно, выражения критериев прочности по конструкции должны включать кроме характеристик напряженного состояния параметры, отражающие индивидуальные особенности материала в конкретных условиях испытания. Однако о долговечности материала при том или ином напряженном состоянии часто судят только по величине той или иной характеристики напряженного состояния без достаточного учета комплекса свойств материала. При этом, как правило, в качестве критерия длительной прочности используют одну из характеристик напряженного состояния. В одних исследованиях результатом анализа испытаний выявлена возможность использования в качестве критерия длительной прочности величины максимального нормального напряжения (ст ), в других хорошее соответствие результатов опыта с расчетом получено при использовании в качестве критерия интенсивности напряжений (о/).  [c.131]


Рассмотренные закономерности малоциклового и длительного циклического деформирования и разрушения относятся к стадии до момента образования усталостной трещины. Вместе с тем в ряде случаев важным при обеспечении требуемой долговечности является эксплуатация конструкции на стадии распространения малоцикловой трещины. Названные вопросы в настоящее время интенсивно развиваются на основе подходов механики упругопластического разрушения. Переход к расчетам на стадии распространения трещин, внедрение в практику методов оценки выработки ресурса позволят выполнять контроль прочности ответственных конструкций по состоянию в эксплуатации.  [c.277]

Проблема длительной циклической прочности элементов конструкций связана с исследованием закономерностей деформирования и условий разрушения материалов для случая циклического нагружения при высоких температурах. Наряду с указанным неотъемлемой частью этой проблемы является проверка и уточнение критериев разрушения при неоднородном напряженном состоянии, в особенности в зонах концентрации, и решение краевых задач исходя из уравнений состояния применительно к процессам циклической ползучести. В настоящей работе рассматривается главным образом первая часть этой проблемы, являющаяся основой для разработки вопросов длительной циклической прочности элементов конструкций в целом, и дается приближенная оценка несущей способности при неоднородном напряженном состоянии, позволяющая сделать качественный анализ особенностей этой проблемы.  [c.39]

Исследование полей деформаций и напряжений. При оценке прочности элементов конструкций при длительном малоцикловом и неизотермическом нагружении необходимо определять поля деформаций и напряжений с учетом работы материала в опасных зонах за пределами упругости в условиях повторного нагружения и проявления температурно-временных эффектов. Исходными расчетными параметрами являются нагрузка, перемещение и температура.  [c.18]

Для использования данного критерия при оценке прочности оболочечных конструкций требуется информация о кинетике циклических и односторонне накопленных деформаций в максимально нагруженных зонах конструкции, а также данные о сопротивлении разрушению конструкционных материалов, полученные с учетом высоких температур эксплуатации, формы цикла нагружения, времени выдержки и частоты. Для проверки правильности метода оценки длительной малоцикловой прочности необходимы  [c.161]


Особенности оценки длительной циклической прочности элементов конструкций из алюминиевых сплавов при температурах до 200° С и из жаропрочных сплавов при температурах до 950° С изложены выше, в гл. 4 и 5.  [c.245]

Только располагая уже проведенным расчетом напряженно-деформированного состояния, инженер может выявить опасные зоны в конструкции и воспользоваться критериями длительной прочности по разрушению для оценки безопасного срока работы конструкции. .  [c.13]

Оценка длительной прочности элемента конструкции находящегося в сложном и переменном во времени напряженном состоянии, может быть произведена на основе принципа линейного сум-  [c.134]

Длительная прочность и суммирование повреждений. В основу оценки запасов прочности длительно работающих многорежимных конструкций, установления эквивалентных режимов и разработки программ ускоренных испытаний положены закономерности накопления повреждений. Наибольшее распространение получило линейное суммирование относительных долговечностей.  [c.39]

Оценка долговечности ВС в целом связана с выявлением наиболее напряженных зон, которые в процессе эксплуатации лимитируют ресурс всей конструкции, не позволяя реализовать для всей конструкции или узла в целом располагаемую ими долговечность. Необходимо также учитывать тот факт, что циклическое нагружение элементов конструкции в процессе эксплуатации осуществляется по законам статистики неравномерно по типам ВС и по условиям их эксплуатации в различных регионах. В связи с этим первоначальное проектирование ВС с обеспечением длительной усталостной прочности осуществлялось по принципу безо-  [c.35]

Дифференциация труб проведением структурной диагностики всех труб паропроводов с привлечением современных неразрушающих методов — очень трудоемкая операция и не может дать полной гарантии достоверности результатов исследования из-за возможных структурных изменений в локальных объемах металла. В сложных деталях элементов турбин такая диагностика еще более затруднена. Поэтому, оценивая работоспособность конструкции, следует учитывать роль объемов металла с пониженным сопротивлением разрушению, т. е. использовать методы вероятностной оценки пределов длительной прочности по результатам анализа испытаний металла многих промышленных партий.  [c.106]

Установление причин разрушения конструкций, в особенности, сложных — это комплексное исследование, при котором необходим анализ эксплуатационных нагрузок, проверка расчетов на прочность, статистическая оценка вероятности разрушения, анализ характера взаимодействия различных узлов и элементов конструкций, технологии изготовления и ремонта детали, установление длительности и других условий хранения, проверка прочностных и пластических характеристик материала и пр.  [c.172]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Рекомендуемый метод все же остается приближенным, а получаемые оценки прочности диска носят относительный характер. В связи с этим большое значение приобретают выбор основной расчетной механической характеристики (предел текучести, предел длительной прочности, предел ползучести) и определение оптимальных коэффициентов запаса. Как обычно в инженерной практике, эти задачи должны решаться с учетом имеющихся данных эксплуатации работающих конструкций рассматриваемого типа, включая анализ случаев разрушения, и результатов специально поставленных экспериментов (испытания на разрушение в условиях, приближающихся к эксплуатационным).  [c.160]


Таким образом, в результате обработки данных определяют основные особенности и параметры расчетного режима термомеханического нагружения характер сочетания циклов повторно-статической нагрузки и температуры, значения предельных нагрузок (деформаций) и температур шах > min > Диапазон их изменения, частоту v цикла нагружения в переменной части цикла, время выдержки нагрузки и температуры, число циклов и т. д. Эти данные используют в дальнейшем для выбора режимов и проведения испытаний на малоцикловую усталость с целью получения базовых характеристик и для оценки прочности конструкции при длительном малоцикловом нагружении.  [c.18]

Анализ НДС элементов конструкции при малоцикловом термомеханическом нагружении (см. гл. 4) дает необходимую информацию о циклических упругопластических деформациях в наиболее нагруженных зонах конструкций, а также зависимости этих деформаций от числа циклов, скорости нагружения и длительности выдержки при постоянной нагрузке. Эту информацию принимают в качестве исходных данных при оценке прочности конструктивных элементов с помощью деформационно-ки-нетического критерия прочности (см. гл. 2).  [c.246]

При расчетах длительной прочности конструкций возникает необходимость в оценке долговечности не только в стадии окончательного разрушения, но и в стадии образования макротрещин. При испытаниях необходимо получить информацию о напряжениях и деформациях, соответствующих началу разрушения. Учитывая сложность экспериментального определения напряжений и деформаций, соответствующих образованию трещин при заданной долговечности т, целесообразно при постановке базовых опытов измерять поперечные деформации ijj x в зоне образования макротрещин на разрушившихся образцах (прп этом деформация i tt будет в пределах 1 Вт— tix)-  [c.23]

Во многих случаях уровень термоупругих напряжений в элементах конструкций является решающим для оценки их прочности и ресурса. Эта ситуация характерна для современных энергетических установок с ВВЭР, условия эксплуатации которых определяются длительным пребыванием деталей конструкций при высоких температурах, многократными циклами нагрев-охлаждение, значительными скоростями изменения температуры в переходных режимах и тл.  [c.78]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра—трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]

Модельные испытания производятся в отдельных случаях также и для оценки работоспособности конструкции в реальных условиях. Так, сварные диски и роторы подвергаются испытаниям на разгон в специальных установках. При этом для деталей, работающих в зоне высоких температур, производится оценка длительной прочности конструкции и испытания проводятся продолжительное время.  [c.24]

Расчет высоконагруженных элементов конструкций на малоцикловую усталость — сложная задача, для решения которой необходимо использовать результаты комплексного исследования как условий их нагружения, так и циклических свойств материалов. Сейчас оценки прочности конструкций на стадиях проектирования и эксплуатации либо основываются главным образом на углубленном расчете их статической прочности, либо дополняются расчетом на усталость и длительную прочность, в том числе с учетом соответствующих вероятностных представлений.  [c.3]

Поверочные расчеты имеют своей целью оценку работоспособности конструкций с учетом условий эксплуатации (режимов, тепловых и механических нагрузок, воздействий окружающих сред, переменности и длительности нагружения), конструктивных форм и технологии. К поверочным расчетам относятся расчеты на статическую прочность (по категориям напряжений), циклическую прочность, сопротивление хрупкому разрушению и устойчивость.  [c.32]

Как отмечалось в 1 и 2, условие нагружения конструкций натриевых реакторов на быстрых нейтронах характеризуется температурами до 550—610° С для хромоникелевых аустенитных сталей типа 18-8 и 500° для хромо молибденовых. Корпус реактора и внутриреакторные конструкции подвергаются охрупчиванию при облучении нейтронами (удлинение стали типа 18-8 становится меньше 10%). Эксплуатация связана с чередованием стационарных и нестационарных режимов (пуск, останов, аварийное расхолаживание, изменение мощности и др.), и по предельным оценкам число переходных режимов с изменением температур до 400—500° С не превышает 1500. Суммарное время переменных тепловых режимов составляет не более 10% от общего временного ресурса (2- --4-3)-10 ч., т. е. основное время эксплуатации относится к стационарному режиму. Накопление циклических и длительных статических повреждений сопровождается при эксплуатации изменением состояния металла по химсоставу и механическим свойствам. Получение экспериментальных кривых усталости при реальных деформациях (размах до 0,5%) и длительности нагружения представляет невыполнимую задачу, поэтому в любом варианте расчета прочности неизбежна необходимость обоснования экстраполяции данных на большие сроки службы. Существующие предложения по расчету длительной циклической прочности отличаются как по определению напряжений и деформаций, так и по расчету предельных повреждений.  [c.37]


Оценка долговечности и запасы прочности. На основе данных о режимах нагружения и нагрева определяют циклические и односторонне накопленные деформации в максимально напряженных зонах элементов конструкций, лимитирующих сопротивление длительному малоцикловому и неизотермическому нагружению. Деформации устанавливаются экспериментально или в результате решения соответствующей задачи применительно к эксплуатационным условиям рассчитываемой на прочность конструкции.  [c.189]

Важным элементом обоснования метода расчета на прочность является накопление и систематизация данных об отказах по критериям длительной малоцикловой и неизотермической прочности при эксплуатации машин и конструкций. Указанное дает возможность проверить достоверность расчетных оценок долговечности, а также уточнить запасы прочности.  [c.231]

При разработке методик испытания образцов особое внимание должно быть уделено выявлению склонности соединений к хрупким разрушениям, являющимся основной причиной снижения их эксплуатационной надежности. Лишь получение с помощью выбранных методов испытаний уверенных данных об этой характеристике позволяет рекомендовать их для оценки работоспособности сварных высокотемпературных конструкций. Все это требует, кроме применения классических методов испытаний, предназначенных в первую очередь для определения характеристик прочности материалов и сварных соединений, вводить и ряд новых методов, предназначенных специально для определения длительной пластичности и вероятности хрупких разрушений. Наиболее перспективным в этих случаях является использование методик, деформирование в которых осуществляется изгибом.  [c.108]

В комплекс основных характеристик, подлежащих определению при оценке свойств жаропрочности сварных соединений, так же как и металла конструкций, входят сопротивление ползучести и релаксационная стойкость длительная прочность и пластичность стабильность структуры и свойств в процессе выдержки при рабочей температуре.  [c.109]

В монографии систематически изложены вопросы сопротивления деформированию и разрушению при малоцикловом высокотемпературном нагружении. Разработаны способы интерпретации связи циклических напряжений и деформаций на основе изоциклических и изохронных диаграмм циклической ползучести и свойств подобия. Для определения предельных состояний по моменту образования разрушения используется деформационно-кинетический критерий длительной малоцикловой прочности. Закономерности деформирования и разрушения использованы для разработки основ методов оценки малоцикловой прочности элементов конструкций при нормальной и высоких температурах.  [c.2]

Выбор характеристик для оценки конструкционной прочности металла в пласти1 еской области зависит от характера нагружения и вида нарушения прочности данной конструкции или машины [14]. Нарушение прочности может происходить как вследствие наступления чрезмерной пластической деформации (текучесть, ползучесть), так и вследствие разрушения (статическое путем отрыва или среза, усталостное, статическое длительное или замедленное), не говоря уже о таких особых случаях, как потеря устойчивости или износ.  [c.325]

В предыдущей главе на основании разработанных методов были рассмотрены подходы к оценке циклической прочности элементов сварных конструкций было показано, что технологические напряжения, обусловленные процессом сварки, в ряде случаев оказывают значительное влияние на долговечность элементов конструкций. В настоящей главе будет рассмотрено влияние технологических напряжений (несварочного происхождения) на длительную прочность конструкций. Как и в предыдущей главе, для решения такой задачи задействован комплекс методов анализа деформирования и повреждения материала, изложенный в главах 1 и 3. В качестве примера выбран коллектор парогенератора ПГВ-1000.  [c.327]

Для проведения расчетной оценки длительной циклической прочности компенсатора необходимо располагать данными о характеристиках прочности конструкционных материалов и на этой основе выполнять расчет долговечности путем сопоставления величин циклических деформаций в наиболее нагруженных зонах конструкции с разрушаюЕцими деформациями, полученными при испытании образцов. Сопоставление должно производиться в инвариантных к типу напряженного состояния деформациях, причем в исследовании [123] используются интенсивности указанных величин (формулы (4.3.4)).  [c.205]

Задача об определении сопротивления малоцикловому разрушению при температурах более высоких, чем указанные, когда циклические пластические деформации сочетаются с деформациями ползучести, существенно усложняется. В настояш,ее время осуществляются интенсивные экспериментальные исследования уравнений состояния и критериев разрушения при длительном цикличес-ком нагружении в условиях однородных напрян енных состояний при жестком и мягком нагружении. Результаты этих исследований освещены в трудах конференций в Киото (1971), Каунасе (1971), Будапеште (1971), Филадельфии (1973) [1, 3, 6, 7], а также конференций в Лондоне (1963, 1967, 1971), Сан-Франциско (1969), Брайтоне Х1969), Дельфте (1970) и др. Однако несмотря на большой объем экспериментальных работ, пока не удалось разработать общепринятые предложения по кривым длительного циклического деформирования и разрушения это не позволяет перейти к расчетной оценке напряженных и деформированных состояний в элементах конструкций для определения их прочности и долговечности на стадии образования трещин и тем более на стадии их развития.  [c.100]

Характеризуя наиболее существенные результаты в разработке и развитии методов механических испытаний, непосредственно связанных с последующей расчетной или экспериментальной оценкой прочности и ресурса конструкций, следует иметь в виду, что прочность и ресурс определяют по критериям следующих основных видов разрушения однократного статического и динамического (хрупкого, квазихрупкого, вязкого) длительного статического циклического (мало- и миогоциклового) длительного циклического.  [c.19]

В авиационной технике вопросы надежности в аспекте прочности являются особенно важными как в процессе производственного освоения новых конструкций, так и в эксплуатации. Промышленная доводка различного рода летательных аппаратов и авиационных двигателей, как правило, связана с повышением прочности деталей и узлов до ур01вня, обеспечивающего предотвращение разрушения на требуемом ресурсе службы. Возникновение разрушений обычно зависит от длительности работы конструкции, в связи с чем вероятностная оценка прочности конструкций осуществляется во временной постановке наряду с рассмотрением их статической прочности как характеризующей сопротивление внезапным отказом. Отказ в результате постоянного изменения состояния материала (разрушение или появление трещины) зависит от наработанного ресурса, поэтому время до возникновения разрушения (срок службы конструкции), т. е. наработка на отказ может рассматриваться как характеристика надежности работы конструкций.  [c.136]

Усложнение геометрии исследуемых элементов конструкций по мере снижения их материалоемкости, нелинейное поведение материалов в зонах конструктивной неоднородности, в вершинах исходных технологических дефектов (трещин, пор, включений, подрезов и т. д.), особенно при длительных статических и циклических нагрузках в условиях повышенных температур, ведут наряду с применением традиционных в практике проектирования аналитических методов к существенному развитию и совершенствованию численных методов и самих критериев прочности и разрушения, ориентированных на использование ЭВМ [1]. При этом вместе с нормативными подходами д.ля оценки ма.лоцикловой прочности и долговечности по условным упругим напряжениям (равным произведению местных упругих или упругопластических деформаций на модуль упругости при соответствующей температуре [2]) разрабатываются уточненные методы расчетов, основанные на деформационных критериях разрушения поцикловой кинетики местных упругопластических деформаций и учитывающие температурно-временные эффекты, частоту нагружения, форму циклов [3—7].  [c.253]


Необходимость исследования закономерностей сопротивления циклического деформирования материалов в условиях малоциклового, длительного циклического и неизотермического нагружений определяется, как было рассмотрено выше (см. гл. 1), прежде всего потребностями разработки экспериментально обоснованных уравнений состояния, позволяющих определять поцикловое напряженно-деформированное СОСТОЯ , ие и анализировать кинетику деформаций в наиболее напряженных зонах (амплитуды местных упругопластических деформаций и величины односторонне накопленных пластических деформаций). Это в свою очередь позволяет рассмотреть процесс накопления циклических повреждений с целью расчетной оценки прочности и долговечности элементов конструкций.  [c.25]

Когда появляется ползучесть, соотвгтствующие элементы конструкции начинают работать в совершенно иных условиях, что не может не отразиться на предъявляемых к ним требованиях, а значит, и на их оценке. В этих случаях свойства материалов и размеры деталей со временем меняются, расчет ведется по пределу длительной прочности и пределу ползучести, т. е. на допустимую  [c.136]

В настоящее время не установлены единые нормы допустимых значений длительной пластичности для котельных сталей. Но при оценке служебных свойств новых марок жаропрочных сталей для котлов и паропроводов и в особенности при выборе оптимальных режимов термической обработки характеристикам длительной пластичности стали должно уделяться первоочередное внимание. В ряде случаев решение, обеспечивающее получение повышенной пластичности за счет некоторого снижения длительной прочности, является более выгодным для обеспечения надежности. При применении материалов с пониженными значениями длительной пластичности это должно учитываться в конструкции (исключение концентраторов напряжений, дополнительных из-гибных и циклических напряжений) кроме того, должны быть ужесточены требования к качеству изготовления (допуски на овальность гибов, раднусы переходов и т. п.).  [c.191]

Для большинства машин и конструкций в связи с повторяемостью нагружения с относительно большими неупругими деформациями (около 0,5... 1%) при ограниченном числе циклов (до 10 ) развиваются длительное статическое и усталостное повреждения. Поэтому задача прогнозирования прочности и ресурса элементов таких машин и конструкций предопределяет необходимость исследования процессов малоциклового деформирования с анализом накопления как длительных статических, так и малоцикловых усталостных повреждений в их взаимодействии. Традиционные методы расчета статической и длительной статической прочности, основанные на оценке номинальных напряжений, оказываются недостаточ-  [c.6]

При оценке прочности и ресурса элементов конструкций, работающих в условиях малоциклового нагружения при переменных температурах и сложнонапряженном состоянии, возникают две связанные задачи определение напряженно-деформированного состояния элементов конструкций при работе материала максимально нагруженных зон за пределами упругости, когда развиты упру-гонластические деформации и деформации ползучести, и на базе полученной информации оценка запасов прочности и долговечности при малоцикловом неизотермическом нагружении. Характер протекания процесса деформирования за пределами упругости и циклические деформации, определяющие формирование предельного состояния материала, зависят от режима термосилового воздействия на деталь и параметров термомеханической нагруженности максимальная температура, градиент температур, длительность и форма термического и силового циклов нагружения и др.), а также сочетания нестационарных режимов нагружения в период эксплуатации изделия.  [c.11]

Ра-ссмотрениая концепция условий прочности предполагает линейное или нелинейное суммирование компонент повреждений, представляя процесс в виде комбинации усталостного (от повторного действия реверсивных деформаций) и длительного статического (от действия односторонне накопленных деформаций) повреждений. Базовыми при оценке повреладений являются кривые малоцикловой усталости (жесткий режим нагру кения) и длительной прочности. Кривую малоцикловой усталости следует получать в условиях, позволяющих исключить влияние времени на расчетную характеристику (высокая частота, отсутствие выдержек). Роль временных процессов отражает кривая длительной прочности. Релаксационные процессы, характерные для условий работы материала в максимально напряженных зонах конструкции, приводят к эквивалентным деформациям, их учитывают при определении доли усталостного повреждения.  [c.93]

Задача определения длительной малоцикловой и неизотермической прочности деталей машин и конструкций включает получение данных о термомеханической нагруженности в эксплуатационных условиях, определение полей деформаций и напряжений рассчитываемых на прочность элементов (в первую очередь в зонах максимальной напряженности), использование обоснованных критериев длительной малоцикловой и иеизотермической прочности, определение механических свойств и расчетных характеристик конструкционных материалов применительно к условиям службы элементов. Этапы оценки длительной малоцикловой и неизотермической прочности представлены на рис. 4.1.  [c.174]

Для оценки длительной малоцикловой прочности сильфонных компенсаторов наряду с данными о циклических и односторонне накопленных деформаций требуются экспериментально обоснованные характеристики сопротивления материала конструкции длительному малодикловому разрун ению.  [c.226]


Смотреть страницы где упоминается термин Прочность длительная конструкции — Оценка : [c.19]    [c.176]    [c.314]    [c.353]    [c.39]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.6 ]



ПОИСК



Оценка прочности

Прочность длительная

Прочность длительная элементов конструкции — Оценка

Прочность конструкции

Соснин О.В., ЛюбашевскаяИ.В. О приближенных оценках высокотемпературной ползучести и длительной прочности элементов конструкции



© 2025 Mash-xxl.info Реклама на сайте