Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет на длительную циклическую прочность

РАСЧЕТ НА ДЛИТЕЛЬНУЮ ЦИКЛИЧЕСКУЮ ПРОЧНОСТЬ  [c.92]

Расчет на длительную циклическую прочность проводят применительно к элементам конструкций, работающим при  [c.92]

Положения, изложенные в разд. 5.3 и пп. 5.6.2, 5.6.3, 5.6.8, 5 6.16—5.6 21, 5.6.23 Норм следует применять при расчете на длительную циклическую прочность.  [c.443]

J. Испытания на длительную циклическую прочность проводят по ГОСТ 25.505 — 85 Расчеты и испытания на прочность. Методы механических испытаний металлов. Испытания при малоцикловом неизотермическом и термоусталостном нагружениях на базе 2 10" ч при температуре, вызывающей наибольшее снижение длительной пластичности исследуемого материала. Характеристики длительной прочности и пластичности определяют в соответствии с требованиями разд. 4 настоящего приложения.  [c.213]


В настоящей главе рассмотрены методы получения характеристик малоциклового разрушения материала компенсаторов в связи с состоянием и особенностями нагружения, а также расчетное и экспериментальное изучение кинетики напряженно-деформированного состояния и условий разрушения самой конструкции при нормальной и высоких температурах. На их основе разработаны основы методики расчета сильфонных компенсаторов на прочность при малом числе циклов нагружения, в том числе с учетом временных эффектов длительной циклической прочности.  [c.178]

Рассматриваемые ниже вопросы малоцикловой и длительной циклической прочности элементов конструкций, являющиеся частью общей проблемы обоснования прочности и ресурса, находятся во взаимодействии со всеми основными этапами расчетов, показанных на рис. 1.2. В силу своей научной новизны, сложности анализа кинетики напряженно-деформированных и предельных состояний нормативные расчеты прочности и ресурса при малоцикловом нагружении получили пока развитие и применение для наиболее ответственных конструкций, таких, как атомные реакторы [12, 13].  [c.13]

Как отмечалось в 1 и 2, условие нагружения конструкций натриевых реакторов на быстрых нейтронах характеризуется температурами до 550—610° С для хромоникелевых аустенитных сталей типа 18-8 и 500° для хромо молибденовых. Корпус реактора и внутриреакторные конструкции подвергаются охрупчиванию при облучении нейтронами (удлинение стали типа 18-8 становится меньше 10%). Эксплуатация связана с чередованием стационарных и нестационарных режимов (пуск, останов, аварийное расхолаживание, изменение мощности и др.), и по предельным оценкам число переходных режимов с изменением температур до 400—500° С не превышает 1500. Суммарное время переменных тепловых режимов составляет не более 10% от общего временного ресурса (2- --4-3)-10 ч., т. е. основное время эксплуатации относится к стационарному режиму. Накопление циклических и длительных статических повреждений сопровождается при эксплуатации изменением состояния металла по химсоставу и механическим свойствам. Получение экспериментальных кривых усталости при реальных деформациях (размах до 0,5%) и длительности нагружения представляет невыполнимую задачу, поэтому в любом варианте расчета прочности неизбежна необходимость обоснования экстраполяции данных на большие сроки службы. Существующие предложения по расчету длительной циклической прочности отличаются как по определению напряжений и деформаций, так и по расчету предельных повреждений.  [c.37]


Основная критика рассмотренного подхода обычно связана с подтверждаемой опытами нестабильностью закономерности суммирования повреждений df и при варьировании механических, временных и температурных условий нагружения (по имеющимся данным, минимум суммы dg может достигать [151 значений 0,1 и менее). Кроме того, погрешность расчета длительной циклической прочности связана как с ограниченной точностью вычисления действительных напряжений в установившейся и не-установившейся стадиях ползучести, так и с трудностями точного разделения размаха напряжений на части с противоположными знаками.  [c.38]

При расчетах циклической и длительной циклической прочности на стадии проектирования и пуска атомных реакторов в соответствии с данными 3 используются характеристики механических свойств применяемых конструкционных материалов, гарантируемые соответствующими техническими ус.ловиями и стандартами. Этими характеристиками являются модули упругости E , пределы прочности од и текучести Оа,2, относительное сужение ф или фй, определяемые при кратковременных статических испытаниях, а также пределы длительной прочности а х и длительная пластичность ф (или 8 ), определяемые из опытов на длительную прочность и ползучесть. Дополнительными характеристиками материалов являются показатели степени кривой  [c.43]

Ниже приведены основные положения, расчетные уравнения и характеристики для определения малоцикловой и длительной циклической прочности, а также алгоритмы и программы расчетов на ЭВМ сопротивления разрушению элементов конструкций при малоцикловом нагружении. В излагаемых методах расчета на сопротивление малоцикловому разрушению были использованы результаты научных разработок, изложенных в настоящ ей серии монографий [1—4] и в работах [5—8], а также разработок нормативных материалов применительно к атомным энергетическим реакторам [9] и методических рекомендаций (по линии научно-методических комиссий в области стандартизации методов расчетов и испытаний на прочность).  [c.214]

Настоящая методика расчета длительной циклической прочности распространяется на поверочный расчет при числе циклов до 10 элементов конструкций и деталей машин из низколегированных сталей при температурах до 550° С и из аустенитных хромоникелевых сталей при температурах до 650° С. Этот  [c.244]

Расчет длительной циклической прочности проводится на основе анализа общих и местных деформаций и напряжений, характера изменения их во времени с учетом температур на каждой стадии нагружения с использованием расчетных кривых длительной циклической прочности, расчетных уравнений или по данным испытаний лабораторных образцов по согласованной методике с учетом температурно-временных факторов.  [c.245]

В расчетах на длительную статическую и длительную циклическую прочность, разд 5 7, 5 9 Норм  [c.425]

В инженерных расчетах на прочность, при анализе причин и характера разрушения объектов сложных технических систем традиционно рассматриваются дефекты, имеющие металлургическую природу (раковина, усадочные трещины) или технологическое происхождение (сварочные, закалочные, ковочные трещины), а также дефекты (особенно опасны трещиноподобные дефекты), которые могут появиться или развиваться в результате длительной эксплуатации аппарата. Доказано, что под воздействием коррозионно-активной среды, циклического нагружения и других факторов дефекты могут увеличиваться в размерах и тогда их развитие переходит из стадии стабильного (контролируемого) в стадию спонтанного разрушения. Поэтому неслучайно, что в практике эксплуатации сварных конструкций отмечаются случаи их преждевременного разрушения.  [c.111]

Так как при колебаниях напряжения периодически изменяются по величине (рис. 230), то в случае длительного процесса расчет на прочность колеблющихся систем следует производить методами, установленными в расчетах при циклической нагрузке.  [c.396]


Это представление чрезвычайно узкое, так как на самом деле разрушение всегда развивается во времени с той или иной скоростью. Отчасти этот факт учитывается в критериях длительной прочности (см. 8.10) и при исследовании циклической прочности (см. 8.9), где описание явления идет на феноменологическом уровне без особых притязаний на объяснение происходящих при этом глубинных процессов разрушения в материалах. В то же время не представляется возможным грамотно конструировать и рассчитывать на прочность конструкции без ясного представления механизмов разрушения. Усилия многих ученых и научных коллективов направлены на решение этой чрезвычайно важной научной и технической проблемы. Достигнутые результаты уже находят применение в практике расчетов на прочность. Ниже в общих чертах описаны основные результаты, касающиеся в первую очередь объяснения процесса разрушения металлов.  [c.182]

Рассмотренные закономерности малоциклового и длительного циклического деформирования и разрушения относятся к стадии до момента образования усталостной трещины. Вместе с тем в ряде случаев важным при обеспечении требуемой долговечности является эксплуатация конструкции на стадии распространения малоцикловой трещины. Названные вопросы в настоящее время интенсивно развиваются на основе подходов механики упругопластического разрушения. Переход к расчетам на стадии распространения трещин, внедрение в практику методов оценки выработки ресурса позволят выполнять контроль прочности ответственных конструкций по состоянию в эксплуатации.  [c.277]

Расчет высоконагруженных элементов конструкций на малоцикловую усталость — сложная задача, для решения которой необходимо использовать результаты комплексного исследования как условий их нагружения, так и циклических свойств материалов. Сейчас оценки прочности конструкций на стадиях проектирования и эксплуатации либо основываются главным образом на углубленном расчете их статической прочности, либо дополняются расчетом на усталость и длительную прочность, в том числе с учетом соответствующих вероятностных представлений.  [c.3]

Применительно к наиболее ответственным конструкциям (атомные и химические реакторы, сосуды для транспортировки токсичных газов и жидкостей под давлением) выполнение пп. 1—5 осуществляется для стадии образования макротрещин. При этом указанные выше запасы по нагрузкам ид, деформациям 1 и долговечности гея определяются по уравнениям типа (1.3) кривых малоциклового или длительного циклического разрушения, получаемых по критерию образования макротрещин. Однако опыт эксплуатации и испытаний большого числа элементов конструкций при малоцикловом нагружении показывает, что долговечность на стадии развития трещин сопоставима или в 2—5 раз превышает долговечность на стадии образования трещин. Это позволяет за счет уточнения расчетов прочности и ресурса по первой и второй стадии повреждения увеличить срок безопасной эксплуатации конструкций.  [c.20]

Поверочные расчеты имеют своей целью оценку работоспособности конструкций с учетом условий эксплуатации (режимов, тепловых и механических нагрузок, воздействий окружающих сред, переменности и длительности нагружения), конструктивных форм и технологии. К поверочным расчетам относятся расчеты на статическую прочность (по категориям напряжений), циклическую прочность, сопротивление хрупкому разрушению и устойчивость.  [c.32]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]

Увеличение единичной мощности турбины приводит к тому, что номинальные напряжения (статические и циклические) в корпусах и роторах возрастают в большей степени, чем улучшаются механические свойства. Так, при увеличении мощности турбоагрегата в 6 раз (от 200 до 1200 МВт) номинальные напряжения в роторах цилиндров низкого давления увеличиваются в 1,5— 2,5 раза при повышении пределов текучести стали ротора в 1,15— 1,3 раза, номинальные напряжения в цилиндрах высокого и среднего давления повышаются на 20—25 % при практически неизменяющемся уровне длительной статической прочности. То же самое можно отметить и для роторов турбин. Это говорит о тенденции к снижению запасов статической и циклической прочностей и необходимости перехода к новым методам расчета с применением новых критериев прочности и долговечности.  [c.5]


Метод расчета длительной малоцикловой прочности сильфонных компенсаторов с учетом влияния высоких температур и времени нахождения под нагрузкой 19] основан на использовании деформационно-кинетических критериев длительной малоцикловой прочности и решения задачи о напряженно-деформированном состоянии сильфонного компенсатора при длительном циклическом нагружении, а также данных о механических свойствах материалов в указанных условиях.  [c.219]

Рекоменд>емый метод расчета на длительную циклическую прочность приведен в приложении 7.  [c.93]

Анализируются испытания при термоусталости на установках типа Коффин и испытания на длительную циклическую прочность при отсутствии следящей системы с целью воспроизведения условий нагружения, характерных для случая термической усталости. Анализируются результаты испытаний в этих условиях, а также выполняется расчет долговечности с привлечением деформационно-кинетических критериев прочности. Табл. 1, илл. 8, библ. 15 наав.  [c.126]

ЗОНЫ краевого эффекта и изменения средней температуры), например епловых экранов, разделительных оболочек и т. п., разрушение которых не приводит к выходу рабочей среды за пределы удерживающих ее несущих элемен гов, а также смешиванию натрия с водной средой, коэффициенты запаса при расчете этих элементов или их зон на длительную циклическую прочность в соответствии с пп. 3—5 настоящего приложения и формулам п. 5.6.6 Норм принимают равными п =, 5 и п — 5.  [c.452]

Отмеченное показывает, что существует ряд предложений по методам оценки длительной циклической прочности, причем развиваемые в Институте машиноведения деформационно-кинетические критерии охватывают наиболее общий случай нагружения яри наличии как знакопеременных, так и односторонне накапливаемых деформаций, приводящих к усталостному, квазистатичес-кому и переходному характеру длительного циклического разрушения. Полученные в ГосНИИмашиноведения и ряде других организаций экспериментальные данные для различных условий нагружения на основных типах конструкционных материалов специального энергетического аппаратостроения в диапазоне ра бочих температур во всех случаях без исключения показали достаточное соответствие расчетам по критериальным зависимостям (1.2.8), (1.2.9).  [c.43]

Для проведения расчетной оценки длительной циклической прочности компенсатора необходимо располагать данными о характеристиках прочности конструкционных материалов и на этой основе выполнять расчет долговечности путем сопоставления величин циклических деформаций в наиболее нагруженных зонах конструкции с разрушаюЕцими деформациями, полученными при испытании образцов. Сопоставление должно производиться в инвариантных к типу напряженного состояния деформациях, причем в исследовании [123] используются интенсивности указанных величин (формулы (4.3.4)).  [c.205]

Последнее обстоятельство позволяет распространить указанные подходы на расчетное определение прочности и ресурса других типов элементов конструкций. Расчет выполняется на основе деформационно-кинетических критериев малоцикловой и длительной циклической прочности, базируется на расчетных и экспериментальных данных о местной напряженности конструкции с учетом поцикловой и во времени кинетики деформаций, проводится  [c.275]

В качестве расчетных для элементов конструкций при длительном циклическом нагружении используют двухчленные уравнения кривых циклического разрушения. Постоянные коэффициенты в этих уравнениях зависят от времени и получаются из рассмотренных выше опытов на длительную статическую прочность (по стадиям образования трещин и по окончательному разрушению). При таком подходе к расчету базовыми оказываются опыты на сопротивление циклическому разрушению при небольших временах и опыты на длительную прочность при временах, приближающихся к эксплуатационным.  [c.26]

Проблема длительной прочности элементов машин, приборов и аппаратов является традиционной, но за последние годы она расширилась и приобрела особое значение в связи с новыми задачами, которые ставят такие быстро развивающиеся отрасли техники, как энергетическое и химическое машиностроение, авиакосмическая техника и др. Долговечность конструкций приходится оценивать во многих случаях в условиях нестационарных силовых и температурных режимов нагружения, при этом могут протекать различные процессы длительного разрушения. К таким обычно относят статическую усталость, возникающую в результате выдержки конструкционных элементов во времени под действием усилий, мало- и многоцикловую усталость, связанную с циклическими сменами усилий безотносительно ко времени выдержки, а также процессы поверхностных разрушений при действии напряжений и агрессивных сред. При этом возможены еще и другие, комбинированные процессы. Длительному разрушению подвержены не только традиционые металлические, но и различные новые неметаллические материалы — полимеры, керамики, стекла и различные композиты, причем многие неметаллические материалы обнаруживают как циклическую, так и указанную статическую усталость практически в любых температурных условиях, ввиду чего проектирование изделий из этих материалов неизбежно наталкивается на необходимость их расчетов на длительную прочность.  [c.3]

В связи с этими данными для инженерной оценки прочности и долговечности при длительном нагружении можно использовать приведенные выше уравнения (2.2), (2.3), (2.5), (2.6), (2.10) — (2.13), если в них характеристики кратковременных механических свойств Оь, г 5 , г1зь заменить на характеристики длительной прочности 0вт и пластичности г )вт - Для аустенитных нержавеющих сталей, обладающих сравнительно низким отношением Оо.г/Ств, расчет сопротивления длительному циклическому разрушению можно проводить на основе уравнений (2.2), (2.3), (2.10) и (2.11) с использованием характеристик овх и Для этих сталей накоплен значительный экспериментальный материал о характеристиках длительной прочности и длительной пластичности.  [c.39]

При vnpoBefleHHH расчетов на длительную прочность необходимо иметь в виду, что инженер может встретиться с комбинированными случаями нагружения, когда наряду с постоянно действующими или медленно меняющимися нагрузками значительной величины действуют еще циклические нагрузки с относительно небольшими амплитудами. Эти случаи комбинированного нагружения охватываются операторными критериями длительной прочности (гл. V) или энтропийным критерием (гл. VII). Примеры расчета на комбинированное нагружение рассмотрены ниже.  [c.13]

Нормы содержат основную часть и рекомендуемые приложения. В основной (обязательной) части приведены расчет по выбору основных размеров расчет на статическую прочность, устойчивость, циклическую прочность, сопротивление хрупкому разрушению, длительную статическую прочность, длительную циклическую прочность, прогрессирующее формоизменение, сейсмические воздействия, вибропрочность методики определения механических свог1ств и испытаний для определения характеристик прочности.  [c.2]

В работе [123] предлагается метод расчета длительной малоцикловой прочности сильфонных компенсаторов с учетом влияния высоких температур и времени нахождения под нагрузкой. Расчет основан на использовании разработанных в Институте машиноведения деформационно-кинетических критериев длительной малоцикловой прочности [232, 241] и метода решения задачи о напряженно-деформированном состоянии сильфонного компенсатора при длительном циклическом нагружении [140], а также данных о механических свойствах материалов в указанных условиях. Осущест-  [c.198]


Для обоснования метода расчета длительной малоцикловой прочности компенсаторов выполнена программа исследований, включающая экспериментальное получение данных по долговечности сильфонных компенсаторов Z) -40 из нержавеющей аустенитной стали Х18Н10Т со следующими параметрами (рис. 4.3.1) dg = А см = 5,4 см = 0,129 R2 = 0,121 см Iq = 6,1 см п =11. Испытания выполнены с использованием специально спроектированной установки, позволяющей осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения — сжатия с заданными размаха-ми перемещений. Нагрев компенсаторов — печной, частота нагружений 10—56 циклов в минуту при постоянной температуре 600 С. Компенсаторы находились под давлением 1 атм, причем момент разрушения от циклического нагружения автоматически фиксировался по падению давления в результате утечки воздуха через образовавшуюся сквозную трепщну. Малый уровень давления практически не влиял на деформированное состояние конструкции и ее долговечность.  [c.203]

Обоснование несущей способности и создание методов расчета на прочность при таких комбинированных режимах нагружения требуют дальнейшей проработки вопросов длительного циклического нагрун<ения, и в частности вопросов по испытаниям с выдержками при постоянных и переменных температурах.  [c.86]

При определении долговечности элементов конструкций, работающих в условиях повторных высокотемпературных воздействий, необходимо учитывать особенности расчетов на прочность при длительном статическом и малоиикловом нагружении, циклической ползучести и неизотермической усталости на основании деформационно-кинетических критериев прочности.  [c.3]

Для указанных условий деформирования и разрушения долговечность определяют на основании деформационно-кинетических критериев прочности. При расчете учитьшают кинетику циклических и односторонне накопленных деформаций в различных зонах конструктивных элементов, а также изменение механических свойств материала при высокотемпературном малоцикловом нагружении. Определим долговечность элементов конструкций с зонами концентрации напряжений и мембранными зонами при различных режимах длительного малоциклового нагружения, приводящих к усталостным и квазиста-тическим повреждениям. В качестве модельного элемента выберем оболочечную конструкцию с фланцами, работающую при повторном нагружении внутренним давлением при высоких температурах. Предположим, что конструктивный элемент изготовлен из аустенитной стали ее характеристики при статическом и длительном нагружении  [c.122]

В настоящей монографии рассматриваются вопросы малоцик-ювой прочности элементов конструкций различных типов оборудования, которым в процессе эксплуатации в наиболее значительной степени присущи эффекты малоцикловой усталости. В области энергетического машиностроения для элементов конструкций типа корпусов атомных реакторов, трубопроводов, элементов активной зоны, корпусов и роторов турбин, элементов разъемных соединений, теплообменных аппаратов, герметизирующих и компенсирующих элементов актуальны вопросы кинетических закономерностей деформирования и перехода к предельным состояниям. Для этих конструкций важны вопросы моделирования эксплуатационных режимов по частотам, температурам и временам, разработка унифицированных методов расчета на прочность и долговечность при циклическом, длительном циклическом и термоциклическом нагружениях, учет специфики условий нагружения.  [c.4]

Информация о циклических деформациях, необходимая при расчете длительной малоцикловой прочности компенсаторов, была получена на основе численного метода решения задачи [15] о напряженно-деформированном состоянии сильфонного компенсатора при длительном малоцикповом нагружении, алгоритм и программа которого обсуждались выше.  [c.166]

Развитие этих деформаций и повреждений по мере накопления числа циклов зависит от таких важных факторов, как уровень эксплуатационных нагрузок, циклические свойства материалов, максимальные температуры и длительность нагружения в цикле. Если температуры эксплуатации сравнительно невелики и не связаны с образованием статических и повторных деформаций ползучести, то в разрабатываемых методах расчета конструкций на малоцпк-ловую прочность температурно-временные эффекты не учитываются. Это обстоятельство позволяет существенно упростить методику расчета в расчете прочности и долговечности в качестве исходных для заданного режима эксплуатации устанавливаются амплитуды местных, упругопластических деформаций (или местных условных упругих напряжений), коэффициенты асимметрии цикла и число циклов нагружения. Расчет сводится  [c.213]

Для обоснования метода расчета длительной малоцикловой прочности экспериментально определяли долговечности сильфон-ных компенсаторов Ду-40 из стали 12Х18Н10Т (см. рис. 5.2) кв = = 40 мм н = 54 мм Ri = l29 мм / 2= 121 мм 1о = 61 мм п= . Для испытаний использовали специально спроектированный стенд, позволяющий осуществлять требуемый режим циклического деформирования компенсаторов в условиях осевого растяжения-сжатия с заданным размахом перемещения. Нагрев печной, частота нагружений 10. .. 56 циклов в минуту при постоянной температуре 600° С. Компенсаторы находились под избыточным внутренним давлением 0,1 МПа. Момент разрушения фиксировался автоматически по па-денню давления в результате утечки воздуха через образовав)пу-юся трещину. Небольшое давление практически не влияло на деформированное состояние конструкции и ее долговечность.  [c.222]

Располагая расчетными данными о циклических деформациях в максимально нагруженных зонах гофрированной оболочки и кривой усталости конструкционного материала в заданных по частоте и выдержке условиях нагружения, можно определить длительную малоцикловую прочность комненсатора. Расчет производится на основе деформационно-кин-етического критерия (2.41) без учета доли квазистатического повреждения (накоплением односторонних деформаций при длительном малоцикловом нагружении компенсаторов в условиях заданных перемещений можно пренебречь). В табл. 5.4 для различных условий нагрунсения компенсаторов приведены расчетные данные о числе циклов до разрушения.  [c.229]

В отличие от методов сопротивления материалов в третьем разделе рассмотрены новые, более эффективные подходы к оценке прочности и разрушения. Разрушение материала здесь рассматривается как происходящий во времени процесс при кратковременном, длительном, динамическом и циклическом нагружениях. Изложены теория напряженно-деформированного состояния и критерии разрушения тел с грещи-нами, расчеты на прочность по номинальным и местным напряжениям и деформациям, методы расчега на трещиностойкость.  [c.16]


Смотреть страницы где упоминается термин Расчет на длительную циклическую прочность : [c.15]    [c.216]   
Смотреть главы в:

Нормы расчета на прочность оборудования и Н83 трубопроводов атомных энергетических установок  -> Расчет на длительную циклическую прочность



ПОИСК



Длительная циклическая прочность

Прочность длительная

Расчет на циклическую прочность

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте